Открытый урок "обобщение понятия степени". Открытый урок "обобщение понятия степени" Урок и презентация на тему: "Обобщение понятий о показателях степени"

Пособие содержит самостоятельные и контрольные работы по всем важнейшим темам курса математики 10-11 классов. Работы состоят из 6 вариантов трех уровней сложности. Дидактические материалы предназначены для организации дифференцированной самостоятельной работы учащихся.


Примеры.

В ящике лежат 10 шариков, среди которых 3 - белые. Из ящика последовательно вынимают и удаляют по одному шарику до тех пор, пока не появится белый шарик. Найдите вероятность появления белого шарика.

Три стрелка стреляют по одной цели по 2 раза каждый. Известно, что вероятность попадания для каждого стрелка равна 0,5 и не зависит от результатов других стрелков и предыдущих выстрелов. Можно ли утверждать
с вероятностью 0,99, что в цель попадет хотя бы один выстрел?
с вероятностью 0,5, что каждый стрелок попадет в цель хотя бы один раз?

СОДЕРЖАНИЕ
Тригонометрия
С-1. Определение и свойства тригонометрических функций. Градусная и радианная меры угла
С-2. Тригонометрические тождества
С-3. Формулы приведения. Формулы сложения
С-4. Формулы двойного и половинного угла
С-5. Тригонометрические формулы преобразования суммы в произведение и произведения в сумму
С-6*. Дополнительные тригонометрические задачи (домашняя самостоятельная работа)
К-1. Преобразование тригонометрических выражений
С-7. Общие свойства функций. Преобразования графиков функций
С-8. Четность и периодичность функций
С-9. Монотонность функций. Экстремумы С-10*. Исследование функций. Гармонические колебания (домашняя практическая работа)
К-2. Тригонометрические функции
С-11. Обратные тригонометрические функции __
С-12*. Применение свойств обратных тригонометрических функций (домашняя самостоятельная работа)
С-13. Простейшие тригонометрические уравнения
С-14. Тригонометрические уравнения
С-15. Отбор корней в тригонометрических уравнениях. Системы тригонометрических уравнений
С-16*. Методы решения тригонометрических уравнений (домашняя самостоятельная работа)
С-17*. Системы тригонометрических уравнений (домашняя самостоятельная работа)
С-18. Простейшие тригонометрические неравенства
С-19*. Методы решения тригонометрических неравенств (домашняя самостоятельная работа)
К-3. Тригонометрические уравнения, неравенства, системы
Алгебра
С-20. Корень n-ой степени и его свойства
С-21. Иррациональные уравнения
С-22. Иррациональные неравенства. Системы иррациональных уравнений
С-23*. Методы решения иррациональных уравнений, неравенств, систем (домашняя самостоятельная работа)
С-24. Обобщение понятия степени
К-4. Степени и корни
С-25. Показательные уравнения. Системы показательных уравнений
С-26. Показательные неравенства
С-27*. Методы решения показательных уравнений и неравенств (домашняя самостоятельная работа)
С-28*. Показательно-степенные уравнения и неравенства (домашняя самостоятельная работа)
К-5. Показательная функция
С-29. Логарифм. Свойства логарифмов
С-30. Логарифмические уравнения и системы
С-31*. Применение логарифмов в решении трансцендентных уравнений и систем (домашняя самостоятельная работа)
С-32. Логарифмические неравенства
С-33*. Методы решения логарифмических уравнений, неравенств, систем (домашняя самостоятельная работа)
К-6. Логарифмическая функция
С-34. Обобщение понятия модуля. Уравнения и неравенства с модулем
Начала анализа
С-35. Вычисление пределов числовых последовательностей и функций. Непрерывность функции
С-36. Определение производной. Простейшие правила вычисления производных
С-37. Производные тригонометрических и сложных функций
С-38. Геометрический и механический смысл производной
К-7. Производная
С-39. Исследование функции на монотонность и экстремумы
С-40*. Дополнительное исследование функции (домашняя самостоятельная работа)
С-41*. Построение графиков функций (домашняя практическая работа)
С-42. Наибольшее и наименьшее значения функции. Экстремальные задачи
С-43*. Избранные задачи дифференциального исчисления (домашняя самостоятельная работа)
К-8. Применение производной
С-44. Первообразная. Вычисление первообразных
С-45. Определенный интеграл. Вычисление площадей с помощью определенного интеграла
С-46. Применение первообразной и интеграла
С-47*. Избранные задачи интегрального исчисления (домашняя самостоятельная работа)
К-9. Первообразная и интеграл
С-48. Производная и первообразная показательной функции
С-49. Производная и первообразная логарифмической функции
С-50. Степенная функция
С-51*. Дополнительные задачи математического анализа (домашняя самостоятельная работа)
К-10. Производная и первообразная показательной, логарифмической и степенной функций
Комплексные числа
С-52. Понятие комплексного числа. Действия с комплексными числами в алгебраической форме
С-53. Модуль и аргумент комплексного числа. Действия с комплексными числами в геометрической форме
С-54. Тригонометрическая форма комплексного числа. Формула Муавра
С-55*. Дополнительные задачи с комплексными числами (домашняя самостоятельная работа)
К-11. Комплексные числа
Комбинаторика
С-56. Множества. Операции над множествами
С-57. Основные формулы комбинаторики. Простейшие комбинаторные задачи
С-58. Бином Ньютона. Свойства биномиальных коэффициентов
С-59. Комбинаторные задачи. Правило суммы и правило произведения
С-60*. Дополнительные задачи по комбинаторике (домашняя самостоятельная работа)
К-12. Элементы комбинаторики
Теория вероятностей
С-61. Классическая вероятность. Использование формул комбинаторики при вычислении вероятности
С-62. Теоремы сложения и умножения вероятностей
С-63. Вероятность осуществления хотя бы одного из независимых событий. Схема Бернулли
С-64*. Дополнительные главы теории вероятностей (домашняя самостоятельная работа)
К-13. Элементы теории вероятностей
ОТВЕТЫ
Ответы к контрольным работам
Ответы к домашним самостоятельным
работам
ЛИТЕРАТУРА.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Самостоятельные и контрольные работы по алгебре и началам анализа, 10-11 класс, Ершова А.П., Голобородько В.В., 2013 - fileskachat.com, быстрое и бесплатное скачивание.

С любым целочисленным показателем, руководствуясь при этом следующими определениями:

Но математики на этом не остановились, они научились работать не только с целочисленными показателями. В этом параграфе мы обсудим, какой смысл придается в математике понятию степени с дробным показателем, т.е. выясним, что означают такие символы математического языка, как 2 5 , З -0"3 и т.д.

Зададимся вопросом: если вводить символ то каким математическим содержанием его наполнить? Хорошо бы, рассуждали математики, чтобы сохранялись привычные , например, чтобы при возведении степени в степень показатели перемножались, в частности, чтобы выполнялось следующее равенство:


Положим Тогда интересующее нас равенство можно переписать в виде а 5 =2 3 , откуда получаем Значит, появились основания определить

Подобные соображения и позволили математикам принять следующее определение.

Если

Самое любопытное, что введенное определение оказалось настолько удачным, что при нем сохранились все привычные свойства степеней, которые были доказаны для натуральных показателей: при умножении степеней с одинаковыми основаниями показатели складываются, при делении - вычитаются и т.д. Пусть, например, нам нужно выполнить умножение

Поскольку складывать дроби легче, чем применять свойства радикалов, на практике предпочитают заменять радикалы степенями с дробными показателями. Для иллюстрации этого положения вернемся к примеру Если перейти к дробным показателям, то получим:

Видите, насколько быстрее и проще мы получили здесь тот же результат, что и в § 42.
Пример 1. Вычислить:

г) Это задание некорректно, поскольку нет определения степени с дробным показателем для случая отрицательного основания. Математики договорились возводить в дробные степени только неотрицательные числа (и это оговорено в определении). Так что запись вида считается в математике лишенной смысла.
Замечание. Иногда приходится слышать возражения: неверно, что запись лишена смысла, ведь можно вычислить корень 3-й степени из числа -8; получится Так почему бы не считать, что

Если бы математики не запретили себе возводить в дробные степени отрицательные числа, то вот с какими неприятностями пришлось бы столкнуться:

Получилось «равенство» -2 = 2. Выбирая определения, математики как раз и заботятся о том, чтобы все было точно, определенно, недвусмысленно. Поэтому в определении степени с нулевым показателем а° появилось ограничение а в определении степени с положительным дробным показателем
Разумеется, математики не ограничились понятием степени с положительным дробным показателем, они ввели и определение степени с отрицательным дробным показателем, используя известную идею:

Но наличие дробного показателя заставляет сделать ограничение а>0, а наличие знаменателя заставляет сделать ограничение а= 0; в итоге приходится накладывать ограничение а > 0.

Если

Итак, теперь мы знаем, что такое степень с любым рациональным показателем. Справедливы следующие свойства (мы считаем, что а> 0, b> 0, s и t - произвольные рациональные числа):

Частичные обоснования указанных свойств были сделаны выше; этим мы и ограничимся.

Пример 2. Упростить выражение:



Пример 3. Решить уравнения:
а) Возведя обе части уравнения в куб, получаем:

х = ±1.
б) Это практически то же самое уравнение, что и в п. а), но с одной существенной оговоркой: поскольку переменная х возводится в дробную степень, она, по определению, должна принимать только неотрицательные значения. Значит, из найденных выше двух значений х в качестве корня уравнения мы имеем право взять лишь значение х = 1.
Ответ: а) ±1; б) 1.

Пример 4. Решить уравнение:
Введем новую переменную
Значит, получаем квадратное уравнение относительно новой переменной у:

у 2 -2у-8 = 0.

Решив это уравнение, получим: у 1 =-2, у 2 =4. Теперь задача сводится к решению двух уравнений:


Первое уравнение не имеет корней, поскольку (напомним еще раз) область допустимых значений для переменной х в подобных случаях определяется условием х > 0. Решая второе уравнение, последовательно находим:

Уравнения, в которых переменная содержится под знаком корня или возводится в дробную степень, называют иррациональными. Первое знакомство с иррациональными уравнениями состоялось у вас в курсе алгебры 8-го класса, где встречались уравнения, содержащие переменную под знаком квадратного корня. В этой главе мы рассмотрели еще несколько примеров решения иррациональных уравнений - пример 2 из § 39, пример 2 из § 40 и примеры 3 и 4 из § 43.

Основные методы решения иррациональных уравнений:

Метод возведения обеих частей уравнения в одну и ту же степень;
- метод введения новых переменных;
- функционально-графический метод.

Если используется метод возведения обеих частей уравнения в одну и ту же четную степень, то возможно появление посторонних корней, значит, обязательна проверка всех найденных решений - об этом мы говорили и раньше, в курсе алгебры 8-го класса.

А.Г. Мордкович Алгебра 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Урок и презентация на тему: "Обобщение понятий о показателях степени"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Алгебраические задачи с параметрами, 9–11 классы
Программная среда "1С: Математический конструктор 6.1"

Ребята, на этом уроке мы займемся обобщением знаний о показателях степеней. Мы умеем вычислять степени с любым целочисленным показателем. Как быть, если показатель степени - не целое число? И какая связь между корнями и степенными функциями не целого показателя?

Давайте немного повторим, рассмотрим число вида $a^n$.
1. Если $n=0$, то $a^n=a^0=1$.
2. Если $n=1$, то $a^n=a^1=a$.
3. Если $n=2,3,4,5$… то $a^n=a*a*a…*a$ (n множителей).
4. Если $n=1,2,3,4,5$… и $а≠0$, то $a^{-n}=\frac{1}{a^n}$.

Указанные выше правила можно также использовать как памятку!

Во всех представленных выше правилах, показатель степени - целое число. Как быть в случае дробного показателя степени?
Что представляет из себя число $2^{\frac{2}{3}}$ и как с ним работать? При работе с такими степенями нужно, чтобы все свойства для целочисленных степеней сохранялись. Например, при возведении степени в степень – показатели перемножались.

Например: ${(2^{\frac{2}{3}})}^3=2^{\frac{2}{3}*3}=2^2$.
Давайте введем вот такую замену символов: $a=2^{\frac{2}{3}}$.
Тогда: $a^3=2^2$.
Получаем: $a=\sqrt{2^2}$.
То есть мы можем представить исходное выражение в таком виде: $2^{\frac{2}{3}}=\sqrt{2^2}$.

Определение. Пусть нам дана обыкновенная дробь $\frac{a}{b}$, $b≠1$ и $х≥0$, тогда $x^{\frac{a}{b}}=\sqrt[b]{x^a}$.

Например: $3^{\frac{1}{3}}=\sqrt{3}$,
$5^{\frac{2}{5}}=\sqrt{5^2}$.

Давайте умножим два числа с одинаковыми основаниями, но разными степенями:
$a^{\frac{2}{3}}*a^{\frac{1}{4}}=\sqrt{a^2}*\sqrt{a}=\sqrt{a^8}*\sqrt{a^3}=\sqrt{a^{11}}=a^{\frac{11}{12}}$.
Но заметим так же: $\frac{2}{3}+\frac{1}{4}=\frac{8+3}{12}=\frac{11}{12}$.
То есть: $a^{\frac{2}{3}}*a^{\frac{1}{4}}=a^{\frac{2}{3}+\frac{1}{4}}=a^{\frac{11}{12}}$.
Складывать дроби гораздо проще, чем работать с радикалами (нужно привести показатели к одинаковому виду и потом только перемножать). Поэтому принято переходить к степенным функциям с дробным показателем.

Пример.
Вычислить:
а) ${(27)}^{\frac{1}{3}}$.
б) ${(32)}^{\frac{3}{5}}$.
в) $0^{\frac{5}{7}}$.
г) ${(-32)}^{\frac{1}{5}}$.
Решение.
а) ${(27)}^{\frac{1}{3}}=\sqrt{27}=3$.

Б) ${(32)}^{\frac{3}{5}}=\sqrt{{32}^3}={(\sqrt{32})}^3=2^3=8$.

В) $0^{\frac{5}{7}}=\sqrt{0^5}={(\sqrt{0})}^5=0^5=0$.

Г) Извлекать корень с дробным показателем мы можем только из положительного числа, ребята посмотрите на наше определение. Наше выражение не имеет смысла.
Кажется ${(-32)}^{\frac{1}{5}}=\sqrt{-32}=-2$ - верная запись, но давайте внимательно посмотрим на наше выражение: ${(-32)}^{\frac{1}{5}}$=${(-32)}^{\frac{2}{10}}$=$\sqrt{{(-32)}^2}$=$\sqrt{1024}=2$.
Получили противоречивое выражение, хотя все операции выполнены верно, согласно свойствам и определениям. Поэтому математики запретили возводить в дробную степень отрицательные числа.

Ребята, запомните: в дробную степень мы можем возводить только положительные числа!

Определение. Пусть дана обыкновенная дробь $\frac{a}{b}$, $b≠1$ и $х>0$, тогда $x^{-\frac{p}{q}}=\frac{1}{x^{\frac{p}{q}}}$.

Например: $2^{-\frac{1}{4}}=\frac{1}{2^{\frac{1}{4}}}=\frac{1}{\sqrt{2}}$.
$3^{-\frac{3}{5}}=\frac{1}{3^{\frac{3}{5}}}=\frac{1}{\sqrt{3^3}}=\frac{1}{\sqrt{27}}$.

Все свойства с которыми мы сталкивались при работе со степенными числами сохраняются и в случае рациональных степеней, давайте повторим свойства.

Пусть нам даны положительные числа $a>0$ и $b>0$, x и y – произвольные рациональные числа, тогда выполняются следующие 5 свойств:
1. $a^x*a^y=a^{x+y}$.
2. $\frac{a^x}{a^y}=a^{x-y}$.
3. ${(a^x}^y=a^{x*y}$.
4. $(a*b)^x=a^x*a^y$.
5. ${(\frac{a}{b})}^x=\frac{a^x}{b^x}$.

Пример.
Упростите выражение: $\frac{\sqrt{x}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}+\frac{\sqrt{y}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}$.
Решение.
Перепишем числители в виде степенных функций:
$\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}+\frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}-y^{\frac{1}{2}}}$.
Приведем к общему знаменателю:
$\frac{x^{\frac{1}{2}}(x^{\frac{1}{2}}-y^{\frac{1}{2}})+y^{\frac{1}{2}}(x^{\frac{1}{2}}+y^{\frac{1}{2}})}{(x^{\frac{1}{2}}+y^{\frac{1}{2}})(x^{\frac{1}{2}}-y^{\frac{1}{2})}}$ =$\frac{x-x^{\frac{1}{2}}*y^{\frac{1}{2}}+y^{\frac{1}{2}}*x^{\frac{1}{2}}+y}{x-y}$=$\frac{x+y}{x-y}$.

Пример.
Решить уравнения:
а) $\sqrt{x^4}=1$.
б) $x^{\frac{4}{5}}=1$.
Решение.
а) Возведем обе части уравнения в пятую степень:
$x^4=1$.
$x=±1$.

Б) Наше уравнение очень похоже на предыдущие. Если мы перейдем от записи корней к степенным функциям, то запись получится идентичная, но стоит учесть, что у нас сразу дано степенное выражение. По определению число х может быть только положительным, тогда у нас остается один ответ $х=1$.

Пример.
Решить уравнение: $x^{-\frac{2}{5}}+x^{-\frac{1}{5}}-12=0$.
Решение.
Давайте введем новую переменную: $y=x^{-\frac{1}{5}}$.
$y^2={(x^{-\frac{1}{5}})}^2=x^{-\frac{2}{5}}$.
Тогда наше уравнение примет вид обычного квадратного уравнения: $y^2+y-12=0$.
Решив уравнение, получим два корня: $y_1=-4$ и $y_2=3$.

Нам остается решить два уравнения: $x^{-\frac{1}{5}}=-4$ и $x^{-\frac{1}{5}}=3$.
Первое уравнение не имеет корней. Вспомним, что степенные функции с рациональным показателем определены только для положительных чисел.
Решим второе уравнение:
$x^{-\frac{1}{5}}=3$.
$\frac{1}{x^{\frac{1}{5}}}=3$.
$x^{\frac{1}{5}}=\frac{1}{3}$.
$\sqrt{x}=\frac{1}{3}$.
$x=(\frac{1}{3})^5=\frac{1}{243}$.

Ребята, мы рассмотрели два примера решения иррациональных уравнений.

Давайте перечислим основные методы решений иррациональных уравнений.
1) Возведение обеих частей уравнения в одну и ту же степень (при использовании этого метода нужно проверять полученные решения, так как могут возникнуть посторонние решения).
2) Метод замены переменных (введения новых переменных).
3) Построение графиков функций. Обе части уравнения представляем в виде функций, строим их графики и находим точки пересечения графиков.

Задачи для самостоятельного решения

1. Вычислить:
а) ${64}^{\frac{1}{3}}$.
б) ${64}^{\frac{5}{6}}$.
в) ${81}^{\frac{2}{3}}$.
г) ${(-317)}^{\frac{3}{7}}$.
2. Упростите выражение: $\frac{\sqrt{x}}{x^{\frac{1}{3}}-y^{\frac{1}{3}}}-\frac{\sqrt{y}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}$.
3. Решить уравнение:
а) $\sqrt{x^2}=8$.
б) $x^{\frac{2}{3}}=8$.
4. Решить уравнение: $x^{-\frac{2}{3}}-7x^{-\frac{1}{3}}+10=0$.

Что умеете хорошего, то не забывайте, а чего не умеете, тому учитесь.
Из Владимира Мономаха.

Цели урока:

  • Образовательная
    • систематизировать знания по пройденной теме;
    • проверить уровень изученного материала;
    • применить теоретический материал для решения задач.
  • Воспитательная
    • воспитывать чувство ответственности за выполненную работу;
    • воспитывать культуру речи, аккуратность, внимание.
  • Развивающие
    • развивать мыслительную деятельность учащихся;
    • прививать интерес к предмету;
    • развивать любознательность.

Урок повторения и обобщения материала.

Оборудование урока: кодоскоп таблицы.

Оформление урока: на доске тема урока, эпиграф.

Подготовка к уроку: за несколько дней на стенде вывешены вопросы для повторения.

  • Определение степени с целым показателем
  • Свойства степени с целым показателем.
  • Определение степени с дробным показателем.
  • Определение степени с дробным отрицательным показателем.
  • Определение степени с любым показателем.
  • Свойства степени с любым показателем.

Ход урока

1. Организационный момент.

2. Домашнее задание. № 1241, 1242, 1244а, 1245б.

3. Контроль домашнего задания.

Проводим взаимопроверку. Через кодоскоп показываю решения домашнего задания.

№1225б, в; 1227 а, в; 1229а,в;1232в,г;1233г.

Решение домашней работы.

Б) 2 1,3 * 2 -0,7 * 4 0,7 = 2 0,6 * (2 2) 0,7 =2 0,6 * 2 1,4 = 2 2 =4.

В) 49 -2\3 * 7 1\12 * 7 -3\4 = (7 2) -2\3 * 7 1\12 * 7 -3\4 = 7 -4\3 \+1\12 -3\4 = 7 (-16 +1- 9)\12 = 7 -24\12 = 7 -2 = 1\49.

А) (27 * 64) 1\3 = 27 1\3 * 64 1\3 = (3 3) 1\3 * (4 3) 1\3 = 3 * 4= 12.

В) (1\36 * 0,04) -1\2 = (6 -2 * (0,2) 2) -1\2 = (6 -2) -1\2 * ((0,2) 2) -1\2 = 6 * 0,2 -1 = 6 * 10\2=30.

А) = = х 1-3\5 = х 2\5 .

В) = = = с 8\3 -2\3 = с 2 .

В) (d 1\2 -1) * (d 1\2 +1)= d -1

Г) (p 1\3 - q 1\3) * (p 1\3 +(pq) 1\3 + q 2\3) = p- q.

Г) = = .

Рефлексия. Определяем количество ошибок.

4. Ориентация в изучаемом материале.

Ребята, какую тему мы изучали в течение нескольких последних уроков?

5. Мотивация. Сегодня мы проведём урок повторения и обобщения знаний по теме "Обобщение понятия степени". Ребята, обратите внимание на задания, которые мы будем решать на уроке, подобные им могут встречаться в контрольной работе, опросе.

6. Какими свойствами степеней вы пользовались при выполнении домашней работы? Вспомним теорию.

Дополните предложения:

7. Теоретически вы подковались, а теперь осталось проверить практическую часть.

Световой диктант.

(За закрытой доской 2 ученика.) Ребята выполняют задание через копирку, потом проверяем. Кодоскоп.

Вариант1 Вариант 2
Представьте выражение в виде степени с рациональным показателем.
; ; . ; ; .
Ответы. 2 1\2 ; х 2\3 ; а 4\5 . 16 1\5 ; 6 1\3 ; а 3\2 .
Представьте выражение в виде корня из числа или выражения
7 3\5 ; 5х 1\3 ; (5а) 1\3 5 -1\4 ; 7у 2\5 ; (6х) 2\5 .
Ответы. ; 5; . ; 7;
Вычислите
9 1\2 ; (3) 1. 16 1\2 (4)
8 2\3 (4) 2. 81 3\4 (27)
2 -2 * 16 1\2 (1) 3. 3 -2 * 81 1\4 (1\3).

8. А теперь послушаем кусочек истории. Историческая справка.

Представьте себе, что вы попали в Алмазный Фонд нашей страны. И вам побольше хотелось бы узнать об алмазах. Вот этим и займёмся на уроке.

Задание 1.

Выполните вычисления. Запишите в таблицы буквы, связанные с найденными ответами.

Б 49 1\2 = 7 Й 81 0,5 = 9
Ы 32 1\5 = 2 С 8 2\3 = 4
Е 1000 1\3 = 10 Н 0 0,2 = 0
П 0, 0016 1\4 = 0.2 Л 1 -0,6 = 1
И 16 - 1\2 = 0,25 З 16 -0,25 = 0,5
О (8\27) 1\3 = 2\3 Д 16 3\4 = 8
М (5 ) 0,25 = 1.5 А 25 1,5 =125

Название

что в переводе означает

0 10 0.2 2\3 7 10 8 0.25 1, 5 2 9
Н Е П О Б Е Д И М Ы Й

и отражает одно из его главных свойств - наивысшую твёрдость.

Задание 2.

Среди выражений, записанных в таблице, найдите и вычеркните те, которые не имеют смысла. Для остальных выражений найдите равные по значению числа, записанные на рисунках алмазов. Заполните свободные части таблицы числами и буквами.

Французское слово __brilliant_______________ (в русском написании __бриллиант______________________) в переводе означает "блестящий" и используется для обозначения алмазов, подвергнутых огранке и полировке. Такая обработка позволяет получить мистический блеск и великолепную игру света.

Задание 3.

А) Заполните таблицу

Выражение Множество допустимых значений переменной Слова
1. Х 5 арена
6. (-х) -5,1 (- ; 0) площадка

Б) На рисунке показана совершенная бриллиантовая огранка, имеющая форму многогранника с 57 гранями. Эта оптимальная форма и размеры были получены в ХХ веке, благодаря развитию геометрической оптики.

Узнайте, как называются отдельные части такого бриллианта. Используя информацию из таблицы и рисунок:

Задание 4.

А) Упростите выражения:

Б) Найдите значения выражений

в) Используя найденные ответы, заполните пропуски в тексте. Слова пишите в нужных падежах.

Масса драгоценных камней измеряется каратами.: 1 карат = m 1 0,2 г.

Алмазы, имеющие массу более m 2 53 карат, получают собственные имена.

Наиболее крупные драгоценные камни хранятся в Алмазном фонде страны, расположенном в Московском Кремле.

Одним из самых знаменитых бриллиантов является алмаз

Затем попал в

В качестве выкупа за смерть

Он также был найден в

- "море света". Алмаз неоднократно похищался, попадал в различные страны и к разным правителям.

В 1773 году его приобрёл фаворит

Бриллиант был вставлен в Российский державный скипетр.

Задание 5.

А) Упростите выражения

Б) Выполните вычисления

1000 2\3 * 125 1\3 + (1\8) -4\3 + 16 0,25 * 49 0.5 = 530

В) Заполните пропуски в тексте:

Долгое время основным местом добычи алмазов была Индия, а в начале ХХ века были открыты месторождения в Южной Африке. Там в 1905 году на одном из приисков был найден крупнейший алмаз, масса которого составляла 3106 карат. Он был назван именем хозяина прииска.

Куллинан 11 - вторая по величине часть, полученная при гранении алмаза, украсил корону королевы Виктории.

При огранке этот алмаз был рассечён на 9 частей. Наибольшая часть, имеющая массу 530 карат, была названа "Звезда Африки". Этот бриллиант, имеющий 74 грани, стал украшать британский державный скипетр.

Подводим итог урока.

  1. Какую цель ставили в начале урока?
  2. Достигли ли цели урока?
  3. Что нового узнали на уроке?
  4. Ставим оценки за урок.