Ланзар мини низкочастотный гул. Усилитель "Green Lanzar" на N-канальных MOSFET-ах. Симметричный усилитель с квазикомплементарным выходом. Другая полезная информация и возможные варианты устранения неисправностей

Фото прислал Александр (Allroy), Новороссийск


По случаю достался мне «модернизированный» усилитель мощности «Ода-УМ102С». Модернизация была произведена неизвестным мастером настолько сурово, что в живых остались только хорошие «мясистые» радиаторы. Вот к ним я и решил приспособить свой новый проект, который плавно вытек в связи с желанием опробовать новую идею в железе.

Историческая справка
Стереофонический радиокомплекс «Ода 102 Стерео» с 1986 года выпускал Муромский завод «РИП». Комплекс обеспечивал приём моно и стереопередач в диапазоне УКВ, запись моно и стереофонических программ, с последующим воспроизведением. Комплекс состоял из 5-ти функционально законченных блоков: УКВ тюнера «Ода-102С», кассетного магнитофона-приставки «Ода-302С», усилителя мощности «Ода УМ-102С», предварительного усилителя «Ода УП-102С» и 2-х акустических систем «15АС-213».

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Как изготовить L1 я , но если кого такой вариант напрягает, то катушку можно намотать на 2-ваттном резисторе 10-33 Ом проводом диаметром 0.8 мм в один слой.

VT5, VT6 снабжены небольшими радиаторами, представляющими из себя алюминиевую пластинку 10×20 мм.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Спасибо за внимание!
Андрей Зеленин,
Киргизия, г. Бишкек

Очередной летний проект. На сей раз захотелось создать супермощный усилительный комплекс для автомобиля. В моем распоряжении было несколько сотен долларов, поэтому можно было покупать новые компоненты, а не рыться в хламе из-за каждого резистора, как это сделал в прошлый раз.

Итак, новый усилитель должен был работать от 12 Вольт, решил собрать комплекс из усилителей разряда Hi-Fi. Первым был закончен сабвуферный усилитель лазнар, о нем мы сегодня и поговорим.

Схема ланзара полностью линейная — от входа до выхода. Максимальная мощность схемы по заявке составляет 390 ватт и схема вполне может развивать указанную мощность. Как и любой мощный усилитель, ланзар тоже питается от двухполярного источника. Верхних пик питающего напряжения составляет ±70 В, нижний ±30 В, хотя может быть и меньше, но если собираетесь питать усилитель от ±30 В, советую не делать этого, поскольку сам ланзар мощный и высококачественный усилитель и при таком питании могут нарушаться работа отдельных узлов схемы.

Ограничительные резисторы дифференциальных каскадов подбираются исходя от номинала питающего напряжения, подбор номинала приведен ниже (мощность резисторов 1 ватт, спасибо det за табличку).

Питание ±70 В 3,3 кОм…3,9 кОм
Питание ±60 В 2,7 кОм…3,3 кОм
Питание ±50 В 2,2 кОм…2,7 кОм
Питание ±40 В 1,5 кОм…2,2 кОм
Питание ±30 В 1,0 кОм…1,5 кОм

Усилитель ланзар печатная плата.lay

Стабилитроны предназначены для стабилизации питающего напряжения диффкаскадов. Следует использовать стабилитроны на 15 Вольт с мощностью 1-1.3 ватт.

Транзисторы желательно использовать те, которые использованы в схеме, хотя мне пришлось использовать аналоги.




Катушка — мотается проводом 0,8 мм на сверле с диаметром 10мм. Витки катушки склеиваются суперклеем для надежности.

Эмиттерные резисторы выходных транзисторов подбираются с мощностью 5 ватт, в ходе работы они могут перегреваться. Номинал этих резисторов можно подобрать в районе 0.22-0.30 Ом.

Резисторы 3.9 Ом подбираются с мощностью 2 ватт.


Усилитель работает в классе АВ, поэтому для охлаждения транзисторов выходного каскада нужен серьезный теплоотвод, в моем случае использовался радиатор от отечественного усилителя радиотехника У-101.


Подстроечный резистор 1кОм лучше брать многооборотный, им настраивают ток покоя выходного каскада, многооборотный резистор позволяет делать очень точную настройку.

Все транзисторы выходного каскада укрепляют к теплоотводу через изолирующие пластины и шайбы. Перед запуском тщательно проверяйте наличия замыканий выводов транзисторов на теплоотвод.

Входной конденсатор с емкостью 1 мкФ можно подобрать под свой вкус, но поскольку ланзар больше используют для питания канала сабвуфера, то емкость конденсатора желательно брать побольше.

Все пленочные конденсаторы на 63 и более Вольт, с ними не должны возникнуть проблемы, поскольку почти все пленочные конденсаторы делают на указанное напряжение. Конденсаторы могут быть заменены на керамические, но это может повлиять на качество звучания усилителя.

Таблица мощностей и основные параметры усилителя представлены ниже.

ПАРАМЕТР НА НАГРУЗКУ
8 Ом 4 Ома 2 Ома
(мост на 4 Ома)
Максимальное напряжение питания, ± В 65 60 40
Максимальная выходная мощность, Вт при искажениях до 1% и напряжении питания:
±30 В 40 85 170
±35 В 60 120 240
±40 В 80 160 320
±45 В 105 210 НЕ ВКЛЮЧАТЬ!!!
±50 В 135 270 НЕ ВКЛЮЧАТЬ!!!
±55 В 160 320 НЕ ВКЛЮЧАТЬ!!!
±60 В 200 390 НЕ ВКЛЮЧАТЬ!!!
±65 В 240 НЕ ВКЛЮЧАТЬ!!! НЕ ВКЛЮЧАТЬ!!!
Коф усиления, дБ 24
Не линейные искажения при 2/3 от максимальной мощности, % 0,04
Скорость нарастания выходного сигнала, не менее В/мкС 50
Входное сопротивление, кОм 22
Отношение сигнал/шум, не менее, дБ 90

Не советуется поднимать номинал питающего напряжения больше ±60 В, но поскольку я любитель форс-мажорных ситуаций, то подал на схему ±75 Вольт, снял при этом порядка 400 ватт, хотя на плате все стало греться, думаю не стоит повторять мой опыт, возможно мне просто повезло (резисторы диффкаскадов при этом заменил на 4кОм).

Ниже представлен список компонентов для сборки усилителя ланзар своими руками.

  • C3,C2 = 2 x 22µ0
  • C4 = 1 x 470p
  • C6,C7 = 2 x 470µ0 x 25V
  • C5,C8 = 2 x 0µ33C11,C9 = 2 x 47µ0
  • C12,C13,C18 = 3 x 47p
  • C15,C17,C1,C10 = 4 x 1µ0
  • C21 = 1 x 0µ15
  • C19,C20 = 2 x 470µ0 x 100V
  • C14,C16 = 2 x 220µ0 x 100V
  • L1 = 1 x
  • R1 = 1 x 27k
  • R2,R16 = 2 x 100
  • R8,R11,R9,R12 = 4 x 33
  • R7,R10 = 2 x 820
  • R5,R6 = 2 x 6k8
  • R3,R4 = 2 x 2k2
  • R14,R17 = 2 x 10
  • R15 = 1 x 3k3
  • R26,R23 = 2 x 0R33
  • R25 = 1 x 10k
  • R28,R29 = 2 x 3R9
  • R27,R24 = 2 x 0.33
  • R18 = 1 x 47
  • R19,R20,R22
  • R21 = 4 x 2R2
  • R13 = 1 x 470
  • VD1,VD2 = 2 x 15V
  • VD3,VD4 = 2 x 1N4007
  • VT2,VT4 = 2 x 2N5401
  • VT3,VT1 = 2 x 2N5551
  • VT5 = 1 x KSE350
  • VT6 = 1 x KSE340
  • VT7 = 1 x BD135
  • VT8 = 1 x 2SC5171
  • VT9 = 1 x 2SA1930
  • VT10,VT12 = 2 x 2SC5200
  • VT11,VT13 = 2 x 2SA1943
  • X1 = 1 x 3k3


Первое включение и настройка

Первый запуск усилителя нужно делать с ЗАКОРОЧЕННЫМ НА ЗЕМЛЮ ВХОДОМ, так меньше вероятности что-нибудь спалить, если усилитель собран неправильно или есть проблема с работой компонентов. Перед запуском ТЩАТЕЛЬНО ПРОВЕРЯЙТЕ МОНТАЖ. Соблюдайте полярность питания, цоколевку транзисторов и правильное подключение стабилитронов, при неверном включении, последние работают как полупроводниковый диод.

Блок питания — для начала можно использовать маломощный блок питания ватт на 1000. Питание желательно подавать в районе двухполярного 40 Вольт. При использовании сетевых трансформаторов советуется использовать блок конденсаторов с емкостью 15.000мкФ на плечо, а лучше до 30.000мкФ. При использовании импульсных блоков питания 5000мкФ будет достаточно.

В моем случае усилитель должен питаться от импульсного преобразователя напряжения, поэтому использовал блок из 5 конденсаторов с емкостью 1000мкФ (каждый), т.е. имеется рабочая емкость 5000мкФ в плече.

При использовании сетевого трансформатора, вторичную обмотку подключают к сети через последовательно соединенную лампу накаливания, это тоже дополнительная мера предосторожности.

Запускаем усилитель, если обошлось без взрывов и дымовых эффектов, то оставляем усилитель включенным 10-15 секунд, затем выключаем и на ощупь проверяем тепловыделение на транзисторах выходного каскада, если тепла не чувствуется, значит все ОК. Далее отсоединяем выходной провод от земли и включаем усилитель (заранее подключаем к выходу усилителя акустику). Пальцем дотрагиваемся входа усилителя, акустика должна реветь, если все так, значит усилитель заработал.

Далее можно прикрепить теплоотвод к выходникам и включить усилитель под музыку. Вообще, для усилителей такого типа нужен предусилитель, при подаче маломощных сигналов на вход (к примеру — от ПК, плеера или мобильного телефона) усилитель будет звучать не особо громко, поскольку номинала входного сигнала явно маловато для максимальной мощности. Во время опытов подавал сигнал от музыкального центра, и вам тоже советую.

Включаем усилитель на 10-20 минут на средней громкости и настраиваем ток покоя усилителя. ТП желательно настроить в районе 100-130мА. Выставление тока покоя а также замер мощности усилителя показаны на схемах.


СОБИРАЕМ ЛАНЗАР

Повторение одних и тех же вопросов на каждой странице обсуждения этого усилителя побудило меня написать этот небольшой набросок. Все написанное ниже является моим представлением того, что нужно знать начинающему радиолюбителю, решившему сделать этот усилитель, и не претендует на абсолютную истину.

Допустим, вы находитесь в поиске схемы хорошего транзисторного усилителя. Такие схемы, как например «УМ Зуева», «ВП», «Натали», и другие вам кажутся сложными, или мало опыта для их сборки, но хорошего звука хочется. Тогда вы нашли то, что искали! Ланзар представляет собой усилитель, построенный по классической симметричной схеме, свыходным каскадом работающий в классе АВ , и обладает довольно неплохим звучанием, при отсутствии сложной настройки и дефицитных комплектующих.

Схема усилителя:

Я счел нужным внести некоторые незначительные изменения в оригинальную схему: коэффициент усиления немного повышен – до 28 раз (изменен R14), изменены номиналы входного фильтра R1, R2, а также по совету MayBe I’m a Leo номиналы резисторов базового делителя транзистора термостабилизации (R15, R15’) для более плавной настройки тока покоя. Изменения не являются критическими. Нумерация элементов сохранена.

Питание усилителя

Источник питания усилителя – самое дорогостоящее звено в нем, поэтому начинать следует с него. Ниже несколько слов об ИП.

Исходя из сопротивления нагрузки и желаемой выходной мощности выбирается нужное напряжение питания (Таблица 1). Данная таблица взята с сайта-первоисточника (interlavka.narod.ru), однако , лично я настоятельно не рекомендовал бы эксплуатировать данный усилитель на мощностях более 200-220 Ватт.

ЗАПОМНИТЕ! Это не компьютер, никакое супер-охлаждение не нужно, конструкция не должна работать на пределе своих возможностей, тогда вы получите надежный усилитель, который будет работать долгие годы и радовать вас звуком. Мы ведь решили сделать качественное устройство, а не букет новогодних фейерверков, поэтому всякие «выжиматели» пускай идут лесом.

При напряжениях питания ниже ±45 В/8 Ом и ±35 В/4 Ом вторую пару выходных транзисторов (VT12, VT13) можно не ставить! При таких напряжениях питания получаем выходную мощность порядка 100 Вт, что для дома более чем достаточно. Замечу, что если при таких напряжениях все-таки установить 2 пары, то выходная мощность повысится совсем на незначительную величину порядка 3-5 Вт. Но если «жаба не душит», то с целью увеличения надежности можно и 2 пары поставить.

Мощность трансформатора можно рассчитать, используя программу «PowerSup» . Расчет, основанный на том, что примерный КПД усилителя равен 50-55%, а значит, мощность трансформатора равна: Pтранс=(Pвых*Nканалов*100%)/КПД применим только в том случае, если вы хотите долговременно слушать синусоиду. У реального же музыкального сигнала, в отличие от синуса, соотношение пикового и среднего значений гораздо меньше, поэтому нет смысла тратить деньги на лишние мощности трансформатора, которые все равно никогда не будут использованы.

В расчете рекомендую выбирать самый «тяжелый» пик-фактор (8 дБ), чтобы ваш БП незагнулся, если вдруг решите послушать музыку с таким п-ф. Кстати, выходную мощность и напряжение питания тоже рекомендую рассчитать с помощью этой программы. Для Ланзара dU можно выбрать порядка 4-7 В.

Более подробно о программе «PowerSup» и методике расчета написано на сайте автора (AudioKiller’а).

Все это особенно актуально, если вы решили купить новый трансформатор. Если же у вас в закромах он уже имеется, и вдруг оказался большей мощности, чем расчетная, то можно смело его использовать, запас – вещь хорошая, но фанатизма не нужно. Если же вы решили самостоятельно изготовить трансформатор, то на этой страничке Сергея Комарова есть нормальный метод расчета .

Непосредственно сама схема простейшего двуполярного БП выглядит так:

Сама схема и детали для ее построения хорошо описана Михаилом (D-Evil) в ФАКе по TDA7294.

Повторяться не буду, отмечу только поправку про мощность трансформатора, описанно выше, и про диодный мостик : так как у Ланзара напряжение питания может быть выше, чему TDA729х, то мостик должен «держать» соответственно большее обратное напряжение, не менее:

Uобр_мин = 1,2*(1,4*2*Uполуобмотки_трансформатора) ,

где 1.2 – коэффициент запаса (20%)

А при больших мощностях трансформатора и емкостях в фильтре с целью защиты трансформатора и мостика от колоссальных пусковых токов следует использовать т.н. схему «мягкого пуска» или «софтстарт».

Детали усилителя

Список деталей для одного канала приложен в архиве в

Некоторые номиналы требуют особых пояснений:

C1 – разделительный конденсатор, должен быть хорошего качества. По типам конденсаторов, используемых в качестве разделительных, существуют разные мнения, поэтому искушенные смогут сами выбрать для себя наилучший вариант оного. Для остальных рекомендую использовать пленочные полипропиленовые конденсаторы известных брендов типа Рифа PHE426 и т.п., но при отсутствии таковых широкодоступные лавсановые К73-17 вполне подойдут.

От емкости этого конденсатора также зависит нижняя граничная частота, которая будет усиливаться.

В печатной плате от interlavka.narod.ru в качестве С1 предусмотрено посадочное место для неполярного конденсатора, составленного из двух электролитов, включеннях «минусами» друг к другу и «плюсами» в цепь и зашунтированных пленочным конденсатором 1 мкФ:

Лично я бы выкинул электролиты и оставил бы один пленочный конденсатор выше указанных типов, емкостью 1,5-3,3 мкФ – такой емкости достаточно для работы усилителя на «широкую полосу». В случае работы на сабвуфер, емкость требуется по-больше. Тут то и можно было бы добавить электролиты емкостями 22-50 мкФ х 25 В. Однако, печатная плата накладывает свои ограничения, и пленочный конденсатор 2.2-3.3 мкФ туда вряд ли влезет. Поэтому ставим 2х22 мкф 25 В+1 мкФ.

R3, R6 – балластные. Хотя изначально эти резисторы выбраны 2,7 кОм, я бы пересчитал их на нужное напряжение питания усилителя по формуле:

R=(Uплеча – 15В)/Iст (кОм) ,

где Iст – ток стабилизации, мА (порядка 8-10 мА)

L1 – 10 витков провода 0,8 мм на 12 мм оправке, все смазывается суперклеем, и после высыхания внутрь вкладывается резистор R31.

Электролитические конденсаторы С8, С11, С16, С17 должны быть рассчитаны нанапряжение не ниже, чем напряжение питания с запасом 15-20%, например, при ±35 В подойдут конденсаторы на 50 В, а при ±50 В уже нужно выбирать на 63 Вольта. Напряжения других электролитических конденсаторов указано на схеме.

Пленочные конденсаторы (неполярные) обычно не делают рассчитанными менее чем на 63 В, так что тут проблем возникнуть не должно.

Подстроечный резистор R15 – многооборотный, тип 3296.

Под эмиттерные резисторы R26, R27, R29 и R30 – на плате предусмотрены посадочные места под проволочные керамические SQP резисторы мощностью 5 Вт. Диапазон приемлемых номиналов – 0,22-0,33 Ом. Хотя SQP – это далеко не самый лучший вариант, зато доступный.

Можно применить и отечественные резисторы C5-16. Я не пробовал, но возможно они даже будут лучше SQP.

Остальные резисторы – C1-4 (углеродистые) или С2-23 (МЛТ) (металлопленочные). Все, кроме указанных отдельно – на 0,25 Вт.

Некоторые возможные замены :

  1. Парные транзисторы меняются на другие пары. Составление пары из транзисторов двух разных пар недопустимо.
  2. VT5/VT6 можно заменить на 2SB649/2SD669. Следует учесть, что цоколевка этих транзисторов зеркальна относительно 2SA1837/2SC4793, и при использовании их нужно развернуть на 180 градусов относительно нарисованных на плате.
  3. VT8/VT9 – на 2SC5171/2SA1930
  4. VT7 – на BD135, BD137
  5. Транзисторы дифкаскадов (VT 1 и VT3 ), (VT 2 и VT4 ) желательно подобрать попарно с наименьшим разбросом беты (hFE) с помощью тестера. Точности 10-15% вполне достаточно. При сильном разбросе возможен несколько повышенный уровень постоянного напряжения на выходе. Процесс описан Михаилом (D-Evil) в ФАКе по усилителю ВП .

Еще одна иллюстрация процесса измерения беты:

Транзисторы 2SC5200/2SA1943 являются самыми дорогостоящими компонентами в данной схеме, их часто подделывают. Похожие на настоящие 2SC5200/2SA1943 фирмы Toshiba имеют сверху два следа отлома и выглядят так:

Одинаковые выходные транзисторы желательно взять из одной партии (на рисунке 512 – номер партии, т.е. скажем оба 2SC5200 с номером 512), тогда ток покоя при установке двух пар будет равномернее распределяться на каждую пару.

Печатная плата

Печатная плата взята с interlavka.narod.ru. Исправления с моей стороны носили в основном косметический характер, также исправлены некоторые ошибки в подписанных номиналах, вроде перепутанных резисторов у транзистора термостабилизации и др. мелочи. Плата нарисована со стороны деталей. Зеркалить для изготовления ЛУТ’ом не нужно!

  1. ВАЖНО! Перед впаиванием каждая деталь должна быть проверена на исправность, сопротивление резисторов измерено во избежание ошибки в номинале, транзисторы проверены прозвонкой тестером, и так далее. Искать подобные ошибки потом на собранной плате гораздо сложнее, так что лучше не торопиться и все проверить. Cэкономите КУЧУ времени и нервов.
  2. ВАЖНО! Перед впаиванием подстроечного резистора R15 , он должен быть «выкручен» так, чтобы в разрыв дорожки впаивалось его полное сопротивление, т.е., если смотреть по картинке выше, между правым и средним выводом д.б. все сопротивление подстроечника.
  3. Перемычки во избежание случайного к.з. лучше делать изолированными проводами.
  4. Транзисторы VT7-VT13 устанавливаются на общий радиатор через изолирующие прокладки – слюду с термопастой (например, КПТ-8) или «Номакон». Слюда более предпочтительна. Указанные на схеме VT8,VT9 в изолированном корпусе, поэтому их фланцы достаточно просто смазать термопастой. После установки на радиатор тестером проверяются коллекторы транзисторов (средние ножки) на отсутствие к.з. с радиатором.
  5. Транзисторы VT5, VT6 тоже нужно установить на небольшие радиаторы – например 2 плоские пластинки размерами около 7х3 см, вообще, что найдется в закромах, то и ставьте, незабудьте только термопастой промазать.
  6. Для лучшего теплового контакта транзисторы дифкаскадов (VT1 и VT3 ), (VT2 и VT4 ) можно тоже смазать термопастой и прижать их друг к другу термоусадкой.

Первый запуск и настройка

Еще раз внимательно все проверяем, если на вид все нормально, нигде нет ошибок, «соплей», коротких замыканий на радиатор и пр., то можно приступить к первому запуску.

ВАЖНО! Первый запуск и настройку любого усилителя нужно проводить с закороченным на землю входом, с ограничением тока источника питания и без нагрузки . Тогда шанс спалить что-то сильно уменьшается. Самое простое решение, которым пользуюсь я – лампа накаливания 60-150 Вт , включенная последовательно первичной обмотке трансформатора:

Запускаем через лампу усилитель, измеряем постоянное напряжение на выходе: нормальные значения – не более ±(50-70) мВ. «Гуляние» постоянки в пределах ±10 мВ считается нормальным. Контролируем наличие напряжений 15 В на обоих стабилитронах. Если все в норме, ничего не взорвалось, не сгорело, то приступаем к настройке.

Лампа при запуске исправного усилителя с током покоя = 0 должна кратковременно вспыхнуть (из-за тока при заряде емкостей в БП), а потом погаснуть. Если лампа ярко горит, значит что-то неисправно, выключаем и ищем ошибку.

Как уже было сказано, усилитель прост в настройке: требуется только установить ток покоя (ТП) выходных транзисторов.

Его следует выставлять на «прогретом» усилителе, т.е. перед установкой пусть поиграет некоторое время, минут 15-20. Во время установки ТП вход должен быть закорочен на землю, а выход висеть в воздухе.

Ток покоя можно узнать, измерив падение напряжения на паре эмиттерных резисторов, например на R26 и R27 (мультиметр установить на предел 200 мВ, щупы – на эмиттеры VT10 и VT11 ):

Cоответсвенно, Iпок = Uv/(R26+R26) .

Далее ПЛАВНО , без рывков крутим подстроечник и смотрим на показания мультиметра. Требуется установить 70-100 мА . Для указанных на рисунке номиналов резисторов это эквивалентно показанию мультиметра (30-44) мВ.

Лампочка при этом может немного начать светиться. Проверяем еще раз уровень постоянного напряжения на выходе, если все в норме, можно подключать акустику и слушать.

Фото собранного усилителя

Другая полезная информация и возможные варианты устранения несправностей

Самовозбуждение усилителя: Косвенно определяется по нагреву резистора в цепи Цобеля – R28 . Достоверно определяется с помощью осциллографа. Для устранения попробовать увеличить номиналы корректирующих емкостей C9 и C10.

Большой уровень постоянной составляющей на выходе: подобрать транзисторы дифкаскадов (VT1 и VT3 ), (VT2 и VT4 ) по «Бетте». Если не помогает, или подобрать точнее нет возможности, то можно попробовать изменять номинал одного из резисторов R4 и R5 . Но такое решение – не самое лучшее, лучше все же подобрать транзисторы.

Вариант небольшого повышения чувствительности: Повысить чувствительность усилителя (коэф. усиления) можно, увеличив номинал резистора R14. Коэф. усиления может быть рассчитан по формуле:

Ку = 1+R14/R11 , (раз)

Но не стоит слишком увлекаться, так как с увеличением R14 , уменьшается глубина ООС и увеличивается неравномерность АЧХ и КНИ. Лучше измерить уровень выходного напряжения источника при полной громкости (амплитуду) и подсчитать, какой Ку необходим для работы усилителя с полным размахом выходного напряжения, взяв его с запасом 3 дБ (до клиппинга).

Для конкретики, пусть максимум, до которого терпимо поднять Ку – 40-50. Если надо больше, то делайте предусилитель.

Если возникли какие-то вопросы, пишите в соответствующую тему на форум . Удачной сборки!

ОБЗОР УСИЛИТЕЛЯ МОЩНОСТИ ЛАНЗАР

Откровенно говоря я был сильно удивлен так сильно набирающему популярность выражению УСИЛИТЕЛЬ ЗВУКА. Насколько мне позволяет мое мировозрение, то под усилителем звука может выступать только один предмет - рупор. Вот он действительно усиливает звук уже не один десяток лет. Причем рупор может усиливать звук в обоих направлениях.

Как видно из фотографии рупор ни чего общего с электроникой не имеет, тем не менее поисковые запросы УСИЛИТЕЛЬ МОЩНОСТИ все чаще заменяются на УСИЛИТЕЛЬ ЗВУКА, ну а полное название этого девайса УСИЛИТЕЛЬ МОЩНОСТИ ЗВУКОВОЙ ЧАСТОТЫ вводится всего 29 раз в месяц против 67000 запросов УСИЛИТЕЛЬ ЗВУКА.
Прям интересно с чем это связано... Но это был пролог, а теперь собственно сама сказка:

Принципиальная схема усилителя мощности ЛАНЗАР приведена на рисунке 1. Это практически типовая симметричная схема, что позволило серьезно уменьшить нелинейные искажения до очень низкого уровня.
Данная схема известна довольно давно, еще в восьмидесятых года Болотников и Атаев приводили аналогичную схему на отечественной элементной базе в книге "Практические схемы высококачественного звуковоспроизведения". Однако работы с этой схемотехникой начались несколько не с этого усилителя.
Все началось со схемы автмобильного усилителя PPI 4240 которая была с успехом повторена:


Принципиальная схема автомобильного усилителя PPI 4240

Далее была статья "Вскрываем усилитель -2" от Железного Шихмана (статья к сожалению удалена с авторского сайта). В ней шла речь о схемотехнике автомобильного усилителя Lanzar RK1200C, где в качестве усилителя использовалась все та же симметричнай схемотехника.
Понятно, что лучше один раз увидеть, чем сто раз услышать, поэтому копаясь в своих сто лет записанных дисках я отыскал оригинла статьи и привожу ее в качестве цитаты:

ВСКРЫВАЕМ УСИЛИТЕЛЬ - 2

А.И.Шихатов 2002

Новый подход к конструированию усилителей предполагает создание линейки аппаратов, использующих сходные схемотехнические решения, единые узлы и стилевое оформление. Это позволяет, с одной стороны, сократить расходы на проектирование и изготовление, с другой - расширяет выбор аппаратуры при создании аудиосистемы.
Новая линейка усилителей Lanzar серии RACK выполнена в духе студийной аппаратуры, устанавливаемой в стойку (рэк). На лицевой панели размерами 12,2х2,3 дюйма (310х60мм) установлены органы управления, на задней - все разъемы. При такой компоновке не только улучшается внешний вид системы, но и упрощается работа - кабели не мешают. На передней панели можно смонтировать входящие в комплект крепежные планки и ручки для переноски, тогда аппарат приобретает студийный вид. Кольцевая подсветка регулятора чувствительности только усиливает сходство.
Радиаторы расположены на боковой поверхности усилителя, что позволяет набирать в стойку несколько аппаратов, не нарушая их охлаждение. Это несомненное удобство при создании развернутых аудиосистем. Однако при установке в закрытую стойку необходимо побеспокоиться о циркуляции воздуха - установить приточные и вытяжные вентиляторы, термодатчики. Словом, профессиональная аппаратура во всем требует профессионального подхода.
В линейку входит шесть двухканальных и два четырехканальных усилителя, отличающиеся только выходной мощностью и длиной корпуса.

Структурная схема кроссовера усилителей Lanzar серии RK приведена на рисунке 1. Подробная схема не приводится, поскольку ничего оригинального в ней нет, и не этот узел определяет основные характеристики усилителя. Такая же или аналогичная структура используется в большинстве современных усилителей средней ценовой категории. Набор функций и характеристики оптимизированы с учетом многих факторов:
С одной стороны, возможности кроссовера должны позволять без дополнительных компонентов строить стандартные варианты аудиосистемы (фронт плюс сабвуфер). С другой стороны, вводить полный набор функций во встроенный кроссовер нет особого смысла: Это заметно увеличит стоимость, но во многих случаях останется невостребованным. Выполнение сложных задач удобнее возложить на внешние кроссоверы и эквалайзеры, а встроенные - отключить.

В конструкции использованы сдвоенные операционные усилители KIA4558S. Это малошумящие усилители с низкими собственными искажениями, разработанные с учетом "звукового" применения. Вследствие этого их широко применяют в каскадах предварительного усиления и кросссоверах.
Первый каскад - линейный усилитель с изменяемым коэффициентом усиления. Он согласует выходное напряжение источника сигнала с чувствительностью усилителя мощности, поскольку коэффициент передачи всех остальных каскадов равен единице.
Следующий каскад - регулятор басового усиления (bass boost). В усилителях данной серии он позволяет увеличивать уровень сигнала на частоте 50 Гц на 18 дБ. В продукции других фирм подъем обычно меньше (6-12 дБ), а частота настройки может быть в области 35-60 Гц. Кстати, такой регулятор требует хорошего запаса мощности усилителя: увеличение усиления на 3 дБ соответствует удвоению мощности, на 6 дБ - учетверению, и так далее.
Это напоминает легенду про изобретателя шахмат, который попросил у раджи за первую клетку доски одно зерно, а за каждую последующую - в два раза больше зерен, чем за предыдущую. Легкомысленный раджа не смог выполнить обещание: такого количества зерен не было на всей Земле... Мы в более выгодном положении: увеличение уровня на 18 дБ увеличит мощность сигнала "всего" в 64 раза. В нашем случае в наличии 300 Вт, но не каждый усилитель может похвастаться таким запасом.
Далее сигнал можно подать на усилитель мощности непосредственно, или выделить фильтрами необходимую полосу частот. Кроссоверная часть состоит из двух независимых фильтров. ФНЧ перестраивается в диапазоне 40-120 Гц и предназначен для работы исключительно с сабвуфером. Диапазон перестройки ФВЧ заметно шире: от 150 Гц до 1,5 кГц. В таком виде его можно использовать для работы с широкополосным фронтом или для полосы СЧ-ВЧ в системе с поканальным усилением. Пределы перестройки, кстати, выбраны неспроста: в диапазоне от 120 до 150 Гц получается "дырка", в которой можно спрятать акустический резонанс салона. Примечательно и то, что бас-бустер не отключается ни в одном из режимов. Использование этого каскада одновременно с ФВЧ позволяет корректировать АЧХ в области резонанса салона не хуже, чем эквалайзером.
Последний каскад - с секретом. Его задача - инвертировать сигнал в одном из каналов. Это позволит без дополнительных устройств использовать усилитель в мостовом включении.
Конструктивно кроссовер выполнен на отдельной печатной плате, которая стыкуется с платой усилителя при помощи разъема. Такое решение позволяет для всей линейки усилителей использовать всего два варианта кроссовера: двухканальный и четырехканальный. Последний, кстати, является просто "удвоенным" вариантом двухканального и его секции полностью независимы. Основное отличие - изменившаяся разводка печатной платы.

Усилитель мощности

Усилитель мощности Ланзар выполнен по типовой для современных конструкций схеме, приведенной на рисунке 2. С незначительными вариациями ее можно встретить в большинстве усилителей средней и нижней ценовой категории. Отличие только в типах примененных деталей, количестве выходных транзисторов и напряжении питания. Приведена схема правого канала усилителя. Схема левого канала точно такая же, только номера деталей начинаются на единичку вместо двойки.

На входе усилителя установлен фильтр R242-R243-C241, устраняющий радиочастотные наводки от блока питания. Конденсатор C240 не попускает на вход усилителя мощности постоянную составляющую сигнала. На АЧХ усилителя в звуковом диапазоне частот эти цепи не влияют.
Чтобы избежать щелчков в моменты включения и выключения, вход усилителя замыкается на общий провод транзисторным ключом (этот узел рассмотрен далее, вместе с блоком питания). Резистор R11A исключает возможность самовозбуждения усилителя при замкнутом входе.
Схема усилителя полностью симметрична от входа до выхода. Двойной дифференциальный каскад (Q201-Q204) на входе и каскад на транзисторах Q205,Q206 обеспечивают усиление по напряжению, остальные каскады - усиление по току. Каскад на транзисторе Q207 стабилизирует ток покоя усилителя. Чтобы устранить его "несимметричность" на высоких частотах, он зашунтирован майларовым конденсатором C253.
Каскад драйвера на транзисторах Q208,Q209, как и положено предварительному каскаду, работает в классе A. К его выходу подключена "плавающая" нагрузка - резистор R263, с которого снимается сигнал для возбуждения транзисторов выходного каскада.
В выходном каскаде использовано две пары транзисторов, что позволило снимать с него 300 Вт номинальной мощности и до 600 Вт пиковой. Резисторы в цепях базы и эмиттера устраняют последствия технологического разброса характеристик транзисторов. Кроме того, резисторы в цепи эмиттера служат датчиками тока для системы защиты от перегрузок. Она выполнена на транзисторе Q230 и контролирует ток каждого из четырех транзисторов выходного каскада. При увеличении тока через отдельный транзистор до 6 А или тока всего выходного каскада до 20 А транзистор открывается, выдавая команду на схему блокировки преобразователя напряжения питания.
Коэффициент усиления задается цепью отрицательной обратной связи R280-R258-C250 и равен 16. Корректирующие конденсаторы C251, C252, C280 обеспечивают устойчивость усилителя, охваченного ООС. Включенная на выходе цепь R249,C249 компенсирует рост импеданса нагрузки на ультразвуковых частотах и также препятствует самовозбуждению. В звуковых цепях усилителя использованы всего два электролитических неполярных конденсатора: C240 на входе и C250 в цепи ООС. Ввиду большой емкости заменить их конденсаторами других типов крайне сложно.

Блок питания Блок питания высокой мощности выполнен на полевых транзисторах. Особенность блока питания - отдельные выходные каскады преобразователя для питания усилителей мощности левого и правого каналов. Такая структура характерна для усилителей повышенной мощности и позволяет уменьшить переходные помехи между каналами. Для каждого преобразователя предусмотрен отдельный LC-фильтр в цепи питания (рисунок 3). Диоды D501,D501A защищают усилитель от ошибочного включения в неправильной полярности.

В каждом преобразователе использовано три пары полевых транзисторов и трансформатор, намотанный на ферритовом кольце. Выходное напряжение преобразователей выпрямляется диодными сборками D511,D512,D514,D515 и сглаживается фильтрующими конденсаторами емкостью 3300 мкФ. Выходное напряжение преобразователя не стабилизировано, поэтому мощность усилителя зависит от напряжения бортовой сети. Из отрицательного напряжения правого и положительного напряжения левого канала параметрические стабилизаторы формируют напряжения +15 и -15 вольт для питания кроссовера и дифференциальных каскадов усилителей мощности.
В задающем генераторе использована микросхема KIA494 (TL494). Транзисторы Q503,Q504 умощняют выход микросхемы и ускоряют закрывание ключевых транзисторов выходного каскада. Напряжение питания подано на задающий генератор постоянно, управление включением производится непосредственно от цепи Remote источника сигнала. Такое решение упрощает конструкцию, но в выключенном состоянии усилитель потребляет незначительный ток покоя (несколько миллиампер).
Устройство защиты выполнено на микросхеме KIA358S, содержащей два компаратора. Напряжение питяния подается на нее непосредственно от цепи Remote источника сигнала. Резисторы R518-R519-R520 и термодатчик образуют мост, сигнал с которого подан на один из компараторов. На другой компаратор через формирователь на транзисторе Q501 подается сигнал от датчика перегрузки.
При перегреве усилителя на выводе 2 микросхемы появляется высокий уровень напряжения, такой же уровень возникает выводе 8 при перегрузке усилителя. В любом из аварийных случаев сигналы с выхода компараторов через диодную схему ИЛИ (D505,D506,R603) блокируют работу задающего генератора по выводу 16. Восстановление работы происходит после устранения причин перегрузки или охлаждения усилителя ниже порога срабатывания термодатчика.
Оригинально выполнен индикатор перегрузки: светодиод включен между источником напряжения +15 В и напряжением бортовой сети. При нормальной работе напряжение приложено к светодиоду в обратной полярности и он не светится. При блокировке преобразователя напряжение +15 В пропадает, светодиод индикатора перегрузки оказывается включенным между источником бортового напряжения и общим проводом в прямом направлении и начинает светиться.
На транзисторах Q504,Q93,Q94 выполнено устройство блокировки входа усилителя мощности на время переходных процессов при включении и выключении. При включении усилителя конденсатор C514 медленно заряжается, транзистор Q504 в это время находится в открытом состоянии. Сигнал с коллектора этого транзистора открывает ключи Q94,Q95. После зарядки конденсатора транзистор Q504 закрывается, а напряжение -15 В с выхода блока питания надежно блокирует ключи. При выключении усилителя транзистор Q504 мгновенно открывается через диод D509, конденсатор быстро разряжается и процесс повторяется в обратном порядке.

Конструкция

Усилитель смонтирован на двух печатных платах. На одной из них находятся усилитель и преобразователь напряжения, на другой - элементы кроссовера и индикаторы включения и перегрузки (на схемах не показаны). Платы выполнены из высококачественного стеклотекстолита с защитным покрытием дорожек и смонтированы в корпусе из алюминиевого профиля П-образного сечения. Мощные транзисторы усилителя и блока питания прижаты накладками к боковым полкам корпуса. Снаружи к боковинам прикреплены профилированные радиаторы. Передняя и задняя панели усилителя выполнены из анодированного алюминиевого профиля. Вся конструкция крепится винтами-саморезами с головками под шестигранник. Вот, собственно, и все - остальное видно на фотографиях.

Как видно из статьи оригинальный усилитель ЛАНЗАР и сам по себе довольно не дурен, но хотелось лучше...
Полез по форумам, конечно же на Вегалаб, но особой подержки не нашел - отклинулся всего один человек. Возможно оно и к лучшему - нет кучи соавторов. Ну а в общем то днем рожденья Ланзара можно считать именно это обращение - на момент написания комента плата уже была вытравлена и запаяна почти полностью.

Так что Ланзару уже десять лет...
После нескольки месяцев экспериментов на свет появился первый вариант данного усилителя, названного "ЛАНЗАРОМ", хотя конечно было бы справедливей назвать его "ПИПИАЙ" - началось то все именно с него. Однако слово ЛАНЗАР звучит гораздо приятней для уха.
Если кто-то ВДРУГ сочтет название попыткой сыграть на брендовом имени, то смею его заверить - ни чего подобного в мыслях не было и усилитель мог получить абсолютно любое название. Однако ЛАНАЗРОМ он стал в честь фирмы LANZAR, поскольку именно эта автомобильная аппаратура попадает в тот небольшой список, кого лично уважает колектив, трудившийся над доводкой данного усилителя.
Широкий диапазон питающих напряжений делает возможным построение усилителя мощностью от 50 до 350 Вт, причем при мощностях до 300 Вт у УМЗЧ коф. нелинейных искажения не превышает 0,08% во всем звуковом диапазоне, что позволяет отнести усилитель к разряду Hi-Fi.
На рисунке приведен внешний вид усилителя.
Схема усилителя полностью симметрична от входа до выхода. Двойной дифференциальный каскад (VT1-VT4) на входе и каскад на транзисторах VT5, VT6 обеспечивают усиление по напряжению, остальные каскады - усиление по току. Каскад на транзисторе VT7 стабилизирует ток покоя усилителя. Чтобы устранить его "несимметричность" на высоких частотах, он зашунтирован конденсатором C12.
Каскад драйвера на транзисторах VT8, VT9, как и положено предварительному каскаду, работает в классе A. К его выходу подключена "плавающая" нагрузка - резистор R21, с которого снимается сигнал для возбуждения транзисторов выходного каскада. В выходном каскаде использовано две пары транзисторов, что позволило снимать с него до 300 Вт номинальной мощности. Резисторы в цепях базы и эмиттера устраняют последствия технологического разброса характеристик транзисторов, что позволило отказаться от подбора транзисторов по параметрам.
Напоминаем, что при использовании транзисторов одной партии разброс по параметрам между транзисторами не превышает 2% - это данные завода-изготовителя. Реально крайне редко праметры выходят из трех процентной зоны. В усилителе используются только "одно партийные" оконечные транзисторы, что совместно с балансынми резисторами позволило максимально выровнять режимы работы транзисторов между собой. Однако, если усилитель делается для себя любимого, то будет не бесполезным собрасть проверочный стенд, приведенный в конце ЭТОЙ СТАТЬИ .
Относительно схемотехники остается лишь добавить, что подобное схемотехническое решение дает еще один плюс - полная симметрия избавляет от переходных процессов в оконечном каскаде (!), т.е. в момент включения на выходе усилителя отсутсвуют какие бы то ни было выбросы, характерные большинству дискретных усилителей.


Рисунок 1 - принципиальная схема усилителя ЛАНЗАР. УВЕЛИЧИТЬ .


Рисунок 2 - внешний вид усилителя ЛАНЗАР V1.


Рисунок 3- внешний вид усилителя ЛАНЗАР МИНИ

Принципиальная схема мощного эстрадного усилителя мощности 200 Вт 300 Вт 400 Вт умзч на транзисторах высокого качества Hi-Fi УМЗЧ

Техническе характеристики усилителя мощности:

±50 В ±60 В

390

Как видно из характеристик - усилитель Ланзар очень универсален и может с успехом использоваться в любых усилителях мощности, где требуются хорошие характеристики УМЗЧ и высокая выходная мощность.
Режимы работы были несколько откорректированы, что потребовалось устанавить радиатор на транзисторы VT5-VT6. Как это сделать показано на рисунке 3, пояснений пожалуй не требуется. Подобное изменение существенно снизило уровень искажений по сравнению с оригинальной схемой и сделало усилитель менее капризным к напряжению питания.
На рисунке 4 приведен чертеж расположения деталей на печатной плате и схема подключения.


Рисунок 4

Можно конечно довольно долго расхваливать этот усилитель, однако самохвальством как то не скромно заниматься. Поэтому мы решили посмотреть отзывы тех, кто слышал как это работает. Искать долго не пришлось - на форуме Паяльника это усилитель уже давно обсуждают, так что смотрите сами:

Были конечно и отрицательные, но первый от неправильно собранного усилителя, второй от не доведенного варианта на отечественной комплектации...
Довольно часто задают вопросы как звучит усилитель. Надеемся, что не надо напоминать, что на вкус и цвет товарищей нет. Поэтому, чтобы не навязывать Вам своего мнения мы не будем отвечать на этот вопрос. Отметим одно - усилитель действительно звучит. Звук приятный, не навязчивый, детализация хорошая, при хорошем источнике сигнала.

Усилитель мощности звуковой частоты УМ ЛАНЗАР на базе мощных биполярных транзисторов позволит Вам за короткий промежуток веремени собрать очень высококачественный усилитель звуковой частоты.
Конструктивно плата усилителя выполнена в монофоническом варианте. Однако ни что не мешает приобрести 2 платы усилителя для сборки стереофонического УМЗЧ или же 5 - для сборки усилителя 5.1, хотя конечно высокая выходная мощность больше импонирует сабвуферу, но для сабвуфера он слишком хорошо играет...
Учитывая то, что плата уже запаяна и проверена Вам остается только закрепить транзисторы на теплоотводе, подать питание и отрегулировать ток покоя, в соответствии с Вашим напряжением питания.
Сравнительно низкая цена уже готовой платы усилителя мощности на 350 Вт Вас приятно удивит.
Усилитель мощности УМ ЛАНЗАР хорошо зарекомендовал себя как в автомобильной аппаратуре, так и в стационарной. Особенно популярен среди небольших самодеятельных музыкальных коллективов не обремененных большими финансами и позволяет наращивать мощность постепенно - пара усилителей + пара акустических систем. Чуть позже еще раз пара усилителей + пара акустических систем и уже выигрыш не только по мощности, но и по звуковому давлению, что так же создает эфект дополнительной мощности. Еще позже УМ ХОЛТОН 800 под сабвуфер и перевод усилителей на СЧ-ВЧ звено и в результате уже в сумме 2 кВт ОЧЕНЬ приятного звука, что вполне достаточно для любого актового зала...

Питание ±70 В - 3,3 кОм...3,9 кОм
Питание ±60 В - 2,7 кОм...3,3 кОм
Питание ±50 В - 2,2 кОм...2,7 кОм
Питание ±40 В - 1,5 кОм...2,2 кОм
Питание ±30 В - 1,0 кОм...1,5 кОм
Питание ±20 В - СМЕНИТЕ УСИЛИТЕЛЬ

Разумеется, что ВСЕ резисторы 1 Вт, стабилитроны на 15V желательно 1.3 Вт

По нагреву VT5, V6 - в этом случае можно увеличить радиаторы на них или увеличить их эммитерные резисторы с 10 до 20 Ом.

Про конденсаторы фильтра питания усилителя ЛАНЗАР:
При мощности трансформатора 0,4...0,6 от мощности усилителя в плечо 22000...33000 мкФ, емкости в питании УНа (про которые почему то забыли) увеличить до 1000 мкФ
При мощности трансформатора 0,6...0,8 от мощности усилителя в плечо 15000...22000 мкФ, емкости в питании УНа 470...1000 мкФ
При мощности трансформатора 0,8...1 от мощности усилителя в плечо 10000...15000 мкФ, емкости в питании УНа 470 мкФ.
Указанных номиналов вполне достаточно для качественного воспроизведения любых музыкальных фрагментов.

Поскольку данный усилитель пользуется довольно большой популярностью и довольно часто приходят вопросы о его самостоятельном изготовлении были написаны следущие статьи:
Усилители на транзисторах. Основы схемотехнки
Усилители на транзисторах. Построение симметричного усилителя
Тюнинг Ланзара и изменение схемотехники
Наладка усилителя мощности ЛАНЗАР
Увеличение надежности усилителей мощности на примере усилителя ЛАНЗАР
Предпоследняя статья довольно интенсивно использует результаты измерений параметров при помощи симулятора МИКРОКАП-8. Как пользоваться этой программой подробно описано в трилогии статей:
АМПовичок. ДЕТСКИЙ
АМПовичок. ЮНОШЕСКИЙ
АМПовичок. ВЗРОСЛЫЙ

КУПИТЬ ТРАНЗИСТОРЫ ДЛЯ УСИЛИТЕЛЯ ЛАНЗАР

Ну и на последок хотелось бы привести впечатления одного из поклоников данной схемы, собравшего данный усилитель самостоятельно:
Усилитель звучит очень хорошо, высокий демпинг фактор представляет совсем другой уровень воспроизведения НЧ, а высокая скорость нарастания сигнала отлично справляется с воспроизведением даже самых мельчайших звуков в ВЧ и СЧ диапазоне.
О прелестях звучания говорить можно очень много, но главное достоинство этого усилителя в том, что он не вносит ни какой окраски в звучание-он нейтральный в этом плане, и только повторяет и усиливает сигнал от источника звука.
Многие кто слышали как звучит этом усилитель(собранный по этой схеме) давали самую высокую оценку его звучанию, в качестве домашнего усилителя для высококачественных АС, а выносливость в *приближенным к военным действиям* условиям даёт шанс использовать его профессионально для озвучивания различных мероприятий на открытом воздухе, а так же в залах.
Для простого сравнения приведу пример который будет наиболее актуален среди радиолюбителей, а так же среди уже *искушенных хорошим звуком*
в музыкальной фонограмме Gregorian-Moment of Peace хор монахов настолько реалистично звучит, что кажется будто звук проходит насквозь, а женский вокал звучит так, как будто певица стоит прямо перед слушателем.
При использовании АС проверенных временем таких как 35ас012 и им подобным АС получают новое дыхание и даже на максимальной громкости звучат так же отчётливо.
К примеру для любителей громкой музыки,при прослушивании музыкального трека Korn ft. Skrillex - Get Up
Колонки с уверенностью и без заметных искажений смогли отыграть все сложные моменты.
Как противоположность этому усилителю был взят усилитель на ТДА7294 который уже на мощности менее 70вт на 1канал смог перегрузить 35ас012 так, что было отчётливо слышно как катушка НЧ динамика бьётся о керн, что чревато поломкой динамика и как следствие убыткам.
Чего нельзя сказать о усилителе *ЛАНЗАР* - даже при подводимой к этим колонкам мощности около 150Вт колонки продолжали отлично работать, а НЧ динамик был настолько хорошо управляем, что никаких посторонних звуков просто не было.
В музыкальной композиции Evanescence - What You Want
Сцена настолько проработана, что слышны даже удары барабанных палочек друг о друга А в композиции Evanescence - Lithium Official Music Video
Партия скипки сменяется электрогитарой, так что просто начинают шевелится волосы на голове, ведь ни какой *затянустости* звучания попросту нет, а быстрые переходы воспринимаются как будто перед Вами проносится болит формузы 1, одно мгновение и ВЫ погружаетесь в новый мир. Не за быв о вокале который на протяжении всей композиции вносит обобщённость к этим переходам, придавая гармоничность.
В композиции Nightwish - Nemo
Ударные звучат как выстрелы, чётко и без рамытия, а раскаты грома в начале композиции просто заставляют оглядется по сторонам.
В композиции Armin van Buuren ft. Sharon den Adel - In and Out of Love
Мы снова погружаемся в мир звуков которые пронизывают нас насквозь давая ощущение присутсвия (и это без каких либо эквалайзеров и дополнительных расшерений стереобазы)
В композиции Johnny Cash Hurt
Мы снова погружаемся в мир гармоничного звучания, а вокал и гитара звучат настолько отчётливо, что даже наростающий темп исполнения воспринимается так, как будто мы сидим за рулём мощного автомобиля и жмём педаль газа в пол, при этом не отпускаем а жмём всё сильнее.
При хорошем источнике звукового сигнала и хорошей акустике усилитель вообще *не напрягает* даже на самой высокой громкости.
Как то был у меня в гостях приятель и захотелось ему послушать на что способен этот усилитель, поставив трек в формате ААС Eagles - Hotel California он выкрутил на всю громкость, при этом со стола начали падать инструменты, грудная клетка ощущала как будто хорошо поставленые удары боксёра, стёкла позванивали в стенке, а нам было вполне комфортно слушать музыку, при этом помещение было 14.5м2 с потолком 2.4м.
Поставили ed_solo-age_of_dub , стекла в двух дверках треснули, звук ощущался всем телом, но голова не болела.

Плата, на базе которой делалось видео в формате LAY-5 .

Если собрать два усилка ЛАНЗАР, можно ли их мостом включить?
Можно конечно, но для начала немного лирики:
Для типового усилителя выходная мощность зависит от напряжения питания и сопротивления нагрузки. Поскольку сопотивление нагрузки у нас известно, и источники питания мы уже имеем, то сколько взять пар выходных транзисторов осталось выяснить.
Теоритически суммарная выходная мощность переменного напряжения складывается из мощности отдаваемой выходным каскадом, который состоит из двух транзисторов - один n-p-n, второй p-n-p, следовательно каждый транзистор нагружен на половину суммарной мощности. Для сладкой парочки 2SA1943 и 2SC5200 тепловая мощность составляет 150 Вт, следовательно исходя приведенного выше умозаключения с одной пары выходников можно снимать 300 Вт.
Но вот только практика показывает что в таком режиме кристал просто не успевает отдавать тепло в радиатор и тепловой пробой гарантирован, ведь транзисторы надо изолировать, а изоляционные прокладки, какими бы тонким они не были, все равно увеличивают тепловое сопротивление, да и поверхность радиатора вряд ли кто полирует до микронной точности...
Так что для нормально работы, для нормальной надежности довольно многие приняли несколько друие формулы расчета требуемого количества выходных транзисторов - выходная мощность усилителя не должна привышать тепловой мощности одного транзистора, а не суммарной мощности пары. Другими словами - если каждый танзистор выходного каскада может рассеить по 150 Вт, то выходная мощность усилителя не должна превышать 150 Вт, если выходных транзисторов две пары, то выходная мощность не должна привышать 300Вт, если три - 450, если четыре - 600.

Ну а теперь вопрос - если типовой усилитель может выдать 300Вт и мы включим два таких усилка мостом, то что произойдет?
Правильно, выходная мощность увеличится примерно раза в два, а вот тепловая мощность рассеиваемая на транзисторах увеличится в 4 раза...
Вот и получается, что для постороения мостовой схемы потребуется уже не 2 пары выходников а 4 на каждой половинке мостового усилителя.
И тут же зададим себе вопрос - а надо ли загонять 8 пар дорогих транзисторов для получения 600 Вт, если можно обойтись четырмя парами просто увеличив напряжение питания?

Ну а там конечно дело хозяйское....
Ну и несколько вариантов ПЕЧАТНЫХ ПЛАТ под данный усилитель будет не лишними. Есть и авторские варианты, есть взятые из интернета, поэтому плату лучше перепроверить - будет и тренировка для ума и меньше проблем во время регулировки собранного варианта. Некоторые варианты были исправлены, так что ошибок может и не быть, а может что то и ускользнуло...
Остался не освещенным еще один вопрос - сборка усилителя ЛАНЗАР на отечественной элементной базе .
Я конечно понимаю, что крабовые палочки делаются не из крабов, а из рыбы. Так же и Ланзар. Дело в том, что во всех попытках сборки на отечественных транзисторах используются самые ходовые - КТ815, КТ814, КТ816, КТ817, КТ818, КТ819. У этих транзисторов и коф усиления меньше и частота единичного усиления, так что именно Ланзаровского звучания Вы не услышите. Но всегда есть альтернатива. В свое время Болотников и Атаев предложили что то похожее по схемотехнике, причем тоже довольно не плохо звучащее:

Подробно о том, какой мощности нужен блок питания для усилителя мощности можно помотреть на видео ниже. Для примера взят усилитель STONECOLD, однако данный замер дает понимание тог, что мощность сетевого трансформатора может быть меньше мощности усилителя примерно на 30%.

В конце статьи хотелось бы отметить, что данному усилителю необходим ДВУПОЛЯРНЫЙ блок питания, поскольку выходное напряжение формируется из положительного плеча питания и отрицательного. Схема такого источника питания приведена ниже:

О габаритной мощности трансформатора выводы можно сделать просмотрев видео выше, а вот по остальным деталям сделаю не большое пояснение.
Вторичная обмотка должна быть намотана проводом, сечение котрого расчитано на габаритную мощность трансформатора плюс поправка на форму сердечника.
Например у нас два канала по 150 Вт, следовательно габаритная мощность трансформатора должна быть не менее 2/3 от мощности усилителя, т.е. при мощности усилителя 300 Вт мощность трансформатора должна быть равна как минимум 200 Вт. При питании ±40 В на нагрузку 4 Ома усилитель как раз развивает порядка 160 Вт на канал, следовательно протекающий по проводу ток имеет значение 200 Вт / 40 В = 5 А.
Если трансформатор имеет Ш-образную форму сердечника, то напряженность в проводе не стоит превышать 2,5 А на квадратный мм сечения - так меньше нагрев провода, да и падение напряжения меньше. Если сердечник тороидальный, то напряженность можно увеличить до 3...3,5 А на 1 квадратный мм сечения провода.
Исходя из выше сказанного для нашего примера вторичка должна быть намотана двумя проводами и начало одной обмотки соединено с концов второй обмотки (точка соединения отмечена красным). Диаметр провода равен D = 2 x √S/π.
При напряженности 2,5 А получаем диаметр 1,6 мм, при напряженности 3,5 А получаем диаметр 1,3 мм.
Диодный мост VD1-VD4 мало того, что должен спокойно выдерживать получившийся ток в 5 А, он должне выдерживать ток, который возникает в момент включения, когда необходимо зарядить конеднсаторы фильтра питания С3 и С4, а чем больше напряжение, чем больше емкость, тем выше значение этого стартового тока. Поэтому диоды должны быть как минимум на 15 Ампер для нашего примера, а в случае увеличения напряжения питания и использования усилителей с двумя парами транзисторов в оконечном каскаде нужны диоды на 30-40 ампер или система мягкого старта.
Емкость конденсаторов С3 и С4 исходя из Советской схемотехники 1000 мкФ на каждые 50 Вт мощности усилителя. Для нашего примера суммарная выходная мощнсоть составляет 300 Вт, это 6 раз по 50 Вт, следовательно емкость конденсаторов фильтра питания должна быть 6000 мкФ в плечо. Но 6000 не типовое значение, поэтому округляем до типового в большую сторону и получаем 6800 мкФ.
Откровенного говоря такие конденсаторы попадаются не часто, поэтому ставим в каждое плечо по 3 конденсатора на 2200 мкФ и получаем 6600 мкФ, что вполне приемлемо. Вопрос можно решить несколько проще - использовать по одному конденсатору на 10000 мкФ

Усилитель мощности Ланзар имеет две базовых схемы - первая полностью на биполярных транранзисторах (рис.1), вторая с использованием полевых в предпоследнем каскаде (рис. 2). На рисунке 3 приведена схема этого же усилителя, но выполненная в симмуляторе МС-8. Позиционные номера элементов практически совпадают, поэтому можно смотреть любую из схем.

Рисунок 1 Схема усилителя мощности ЛАНЗАР полностью на биполярных транзисторах.
УВЕЛИЧИТЬ


Рисунок 2 Схема усилителя мощности ЛАНЗАР с использованием полевых транзисторов в предпоследнем каскаде.
УВЕЛИЧИТЬ


Рисунок 3 Схема усилителя мощности ЛАНЗАР из симмулятора МС-8. УВЕЛИЧИТЬ

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УСТАНОВЛЕННЫХ В УСИЛИТЕЛЕ ЛАНЗАР

ДЛЯ БИПОЛЯРНОГО ВАРИАНТА

ДЛЯ ВАРИАНТА С ПОЛЕВИКАМИ

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C9 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C10 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R3,R4 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R28,R29 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT2,VT4 = 2 x 2N5401
VT3,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT8 = 1 x 2SC5171
VT9 = 1 x 2SA1930

VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C10 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C9 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R4,R3 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R29,R28 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT8 = 1 x IRF640
VT9 = 1 x IRF9640
VT2,VT3 = 2 x 2N5401
VT4,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

Для примера возьмем напряжение питания равным ±60 В. Если монтаж выполнен правильно и нет не исправных деталей то получим карту напряжений, показанную на рисунке 7. Токи, протекающие через элементы усилителя мощности показаны на рисунке 8. Рассеиваемая мощность каждого элемента показана на рисунке 9 (на транзисторах VT5, VT6 рассеивается порядка 990 мВт, следовательно корпусу TO-126 требуется теплоотвод ).


Рисунок 7. Карта напряжений усилителя мощности ЛАНЗАР УВЕЛИЧИТЬ


Рисунок 8. Карта токов усилителя мощности УВЕЛИЧИТЬ


Рисунок 9. Карта рассеиваемых мощностей усилителя УВЕЛИЧИТЬ

Несколько слов о о деталях и монтаже:
Прежде всего следут обратить на правильность монтажа деталей, поскольку схема симметричная, то бывают довольно частыми ошибки. На рисунке 10 показано распложение деталей. Регулировка тока покоя (тока, протекающего через оконечные транзисторы при замкнутом на общий провод входе и компенсирующего вольт-амперную характеристику транзисторов) производится резистором Х1. При первом включении движок резистора должен находиться в верхенм по схеме положении, т.е. иметь максимальное сопротивление. Ток покоя должен составлять 30...60 мА. Ставить выше не имеет мысла - ни приборы, ни на слух ощутимых изменений не происходит. Для установки тока покоя производится измерение напряжения на любом из эмиттерных резисторов оконечного каскада и выставляется в соответствии с таблицей:

НАПРЯЖЕНИЕ НА ВЫВОДАХ ЭМИТТЕРНОГО РЕЗИСТОРА, В

СЛИШКОМ МАЛЕНЬКИЙ ТОК ПОКОЯ, ВОЗМОЖНЫ ИСКАЖЕНИЯ "СТУПЕНЬКА", НОРМАЛЬНЫЙ ТОК ПОКОЯ, ВЕЛИКОВАТ ТОК ПОКОЯ - ЛИШНИЙ НАГРЕВ, ЕСЛИ ЭТО НЕ ПОПЫТКА СОЗДАТЬ КЛАСС "А", ТО ЭТО АВАРИЙНЫЙ ТОК .

ТОК ПОКОЯ ОДНОЙ ПАРЫ ОКОНЕЧНЫХ ТРАНЗИСТОРОВ, мА


Рисунок 10 Расположение деталей на плате усилителя мощности. Показаны места, где возникают наиболее часто ошибки монтажа.

Поднимался вопрос о целесообразности использования в эмиттерных цепях оконечных транзисторов керамических резисторов. Можно использовать и МЛТ-2, по два штуки, включенных параллельно с номиналом 0,47...0,68 Ома. Однако вносимые керамическими резисторами искажения слишком малы, а вот тот факт, что они обрывные - при перегрузке они обрываются, т.е. их сопротивление становиться бесконечным, что довольно часто приводит к спасению оконечных транзисторов в критических ситуациях.
Площадь радиатора зависит от условий охлаждения, на рисунке 11 показан один из вариантов, крепить силовые транзисторы к теплоотводу необходимо через изоляционные прокладки . Лучше использовать слюду, поскольку она обладает довольно маленьким тепловым сопротивлением. Один из вариантов крепления транзисторов пказан нарисунке 12.


Рисунок 11 Один из вариантов радиатора для мощности 300 Вт при условии хорошей вентиляции


Рисунок 12 Один из вариантов крепления транзисторов усилителя мощности к радиатору.
Необходимо использовать изоляционные прокладки.

Перед монтажом силовых транзисторов, а так же в случае подозрений на их пробой, силовые транзисторы проверяются тестером. Предел на тестере устанавливается на проверку диодов (рис 13).


Рисунок 13 Проверка оконечных транзисторов усилителя перед монтажом и в случае подозрений на пробой транзисторов после критических ситуаций.

Стоит ли подбирать транзисторы по коф. усиления? Споров на эту тему довольно много и идея подбора элементов тянеться еще с глубоких семидесятых годов, когда качество элементной базы оставляло желать лучшего. На сегодня завод изготовитель гарантирует разброс параметров между транзисторами одной партии не более 2%, что уже само по себе говорит о хорошем качестве элементов. Кроме этого, учитывая то, что оконечные транзисторы 2SA1943 - 2SC5200 прочно обосновались в звукотехнике завод изготовитель начал выпус парных транзисторов, т.е. транзисторы и прямой, и обратной проводимости уже имеют одинаковые параметры, т.е. разницу не боле 2% (рис 14). К сожалению такие пары не всегда встречаютсяв продаже, тем не менее несколько раз нам доводилось покупать "близнецов". Однако даже имея разборос по коф. усиления между транзисторами прямой и обратной проводимости необходимо лишь следить за тем, чтобы транзисторы одной структуры были одной партии, поскольку включены они параллельно и разброс по h21 может вызывать перегрузку одного из транзисторов (у которого этот параметр выше) и как следствие - перегрев и выход из строя. Ну а разброс между транзисторами для положительной и отрицательной полуволн вполне компенсируется отрицательной обратной связью.


Рисунок 14 Транзисторы разной структуры, но одной партии.

Тоже самое относиться и к транзисторам дифкаскада - если они одной партии, т.е. куплены одновременно в одном месте, то шанс на то, что разница в параметрах будет более 5 % ОЧЕНЬ малы. Лично нам больше нравяться транзисторы 2N5551 - 2N5401 фирмы ФАИРЧАЛЬД, однако и ST звучат вполне достойно.
Однако это усилитель собирают и на отечественной элементной базе. Это вполне реально, однако давайте поправку на то, что у купленных КТ817 и найденных на полках у себя в мастерской, купленных еще в 90-х года параметры будут отличаться довольно сильно. Поэтому тут лучше все таки воспользаваться имеющимся почти во всех цифровых тестреах измерителем h21. Правда эта примочка в тестере показываетправду лишь для транзисторов малой мощности. Подбирать при ее помощи транзисторы оконечного каскада будет не совсм правильно, поскольку h21 зависит еще и от протекаемого тока. Именно поэому для отбраковки силовых транзисторов уже делают отдельные проверочные стенды. с регулируемых токо коллектора проверяемого транзистора (рис 15). Градуировка постоянного прибора для отбраковки транзисторов производиться таким образом, чтобы микроамперметр при токе коллектора 1 А отклонялся на половину шкалы, а при токе 2 А - полностью. Собирая усилитель только себе стенд можно и не делать, достаточно двух мультиметров с пределом измерения тока не менее 5 А.
Для произведения отбраковки следует взять любой транзистор из отбраковываемой партии и переменным резистором выставить ток коллектора равным 0,4...0,6 А для транзисторов предпоследнего каскада и 1...1,3 А для транзисторов оконечного каскада. Ну а далее все просто - к клемам подключаются транзисторы и по показаниям амперметра, включенного в коллектор выбираются транзисторы с одинаковыми показаниями, не забывая поглядывать на показания амперметра в базовой цепи - они тоже должны быть похожими. Разброс в 5 % вполне приемлем, для стрелочных индикаторов на шкале можно сделать метки "зеленого коридора" во время градуировки. Следует заметить, что подобные токи вызывают не плохой нагрев кристала транзистора, а учитывая то, что он без теплоотвода длительность замеров не следует растягивать во времени - кнопку SB1 удерживать в нажатом состоянии более чем 1...1,5 сек не следует . Подобная отбраковка прежде всего позвлит отобрать транзисторы с реально похожим коф усиления, а проверка мощных транзисторов цифровым мультиметром есть лишь проверка для успокоения совести - в режиме микротоков у мощных транзисторов коф усиления более 500 и даже небольшой разброс при проверке мультиметром в режимах реальных токов может оказаться огромным. Другими словами - проверяя коф усиления мощного транзистора показанаия мультиметра есть не что иное как абстрактная величина, не имеющая ни чего общего с коф усиления транзистора через переход коллектор-эмиттер протекат хотя бы 0,5 А.


Рисунок 15 Отбраковка мощных транзисторов по коф усиления.

Проходные конденсаторы С1-С3, С9-С11 имеют не совсем типовое включение, по сравнению с заводскими аналогами усилителей. Связанно это с тем, что при таком включении получается не полярный конденсатор довольно большой емкости, а использование плленочного конденсатора на 1 мкФ компенсирует не совсем корректную работу электролитов на высоких частотах. Другими словами эта реализация позволила получить более приятный звук усилителя, по сравнению с одним элетролитом или одним пленочным конденсатором.
В старых версиях Ланзар вместо диодов VD3, VD4 использовались резисторы на 10 Ом. Смена элементной базы позволила немного улучшить работу на пиках сигнала. Для более подробного рассмотрения этого вопроса обратимся к рисунку 3 .
В схеме смоделирован не идеальный источник питания, а более приблежонный к реальному, имеющему свое сопротивление (R30, R31). При воспроизведении синусоидального сигнала напряжение на шинах питания будет иметь вид, показанный на рисунке 16. В данном случае емкость конденсаторов фильтра питания составляет 4700 мкФ, что несколько маловато. Для нормальной работы усилителя емкость конденсаторов питания должна составлять не менее 10000 мкФ на один канал , можно и больше, но существенной разницы уже не заметно. Но вернемся к рисунку 16. Синией линией показано напряжение непосредственно на коллекторах транзисторов оконечного каскада, а красной линией - напряжение питания усилителя напряжения в случае использования резисторов вместо VD3, VD4. Как видно из рисунка напряжение питания оконечного каскада просело с 60 В и распологается между 58,3 В в паузе и 55,7 В на пике синусоидального сигнала. Благодарая тому, что конденсатор С14 не только заражается через развязывающий диод, но и разряжается на пиках сигнала напряжение питания усилителя напряжение приобретает вид красной линии на рисунке 16 и колебается от 56 В до 57,5 В, т.е имеет размах порядка 1,5 В.


Рисунок 16 форма напряжения при использовании развязывающих резисторов.


Рисунок 17 Форма напряжений питания на оконечных транзисторах и усилителе напряжения

Заменив резисторы на диоды VD3 и VD4 мы получаем напряжения, представленные на рисунке 17. Как видно из рисунка амплитуда пульсаций на коллекторах оконечных транзисторах почти не изменилась, а вот напряжение питания усилителя напряжения приобрело совсем другой вид. Прежде всего амплитуда уменьшилась с 1,5 В до 1 В, а так же в тот момент когда проходит пик сигнала напряжение питания УН проседает лишь до половины амплитуды, т.е. примерно на 0,5 В, в то время как при использовании резистора напряжение на пике сигнала проседает 1,2 В. Другими словами - простой заменой резисторов на диоды удалось уменьшить пульсации питания в усилителе напряжения в 2 с лишним раза.
Однако это теоритические выкладки. На практике эта замена позволяет получить "халявных" 4-5 Ватт, поскольку усилителя наступает при более высоком выходном напряжении и уменьшает искажения на пиках сигнала.
После сборки усилителя и регулировки тока покоя следует убедиться в отсутствии постоянного напряжения на выходе усилителя мощности. Если оно выше 0,1 В, то это уже однозначно требует корректировки режимов работы усилителя. В данном случае наиболее простым способом является подбор "подпирающего" резистора R1. Для наглядности приведем несколько вариантов этого номинала и покажем иземения постоянного напряжения на выходе усилителя на рисунке 18.


Рисунок 18 Изменение постоянного напряжения на выходе усилителя в зависимости от номана R1

Не смотря на то, что на симмуляторе оптимальное постоянное напряжение получилось лишь при R1 равным 8,2 кОм в реальных усилителях этот номинал составляет 15 кОм...27 кОм, в зависимости какого производителя используются транзисторы дифкаскада VT1-VT4.
Пожалуй стоит сказать несколько слов об отличиях усилителей мощности полгостью на биполярных транзисторах и с использованием полевиков в предпоследенм каскаде. Прежде всего при использовании полевых транзисторов ОЧЕНЬ сильно разгружается выходной каскад усилителя напряжения, поскольку затворы полевых транзисторов практически не имеют активного сопротивления - только емкость затвора является нагрузкой. В этом варианте схемотехника усилителя начинает наступать на пятки усилителям класса А, поскольку во всем диапазоне выходных мощностей ток протекающий через выходной каскад усилителя напряжения почти не изменятеся. Увеличение тока покоя предпоследнего каскада, работающего на плавающую нагрузку R18 и базы эмиттерных повторителей мощных транзисторов тоже меняется в небольших пределах, что в итоге привело к довольно заметному снижению THD. Однако в этой бочке меда есть и ложка дегтя - снизился КПД усилителя и уменьшилась выходная мощность усилителя, за счет необходимости подавать на затворы полевиков напряжение более 4 В для их открытия (для биполярного транзистора этот параметр составляет 0,6...0,7 В). На рисунке 19 показан пик синусоидального сигнала усилителя, выполненого на биполярных транзистора (синяя линия) и полевиках (красная линия) при максимальной амплитуде выходного сиганала.


Рисунок 19 Изменение амплитуды выходного сигнала при использовании разной элементной базы в усилителе.

Другими словами снижение THD заменой полевых транзисторов приводит к "недополучению" примерно 30 Вт, а уменьшение уровня THD примерно в 2 раза, так что именно ставить уже решать каждому персонально.
Так же следует помнить, что уровень THD зависит и от собственного коф усиления усилителя. В данном усилителе коф усиления зависит от номиналов резисторов R25 и R13 (при используемых номиналах коф усиления составляет почти 27 дБ). Расчитать коф усиления в дБ можно по формуле Ku =20 lg R25 / (R13 +1) , где R13 и R25 - сопротивление в Омах, 20 - множитель, lg - десятичный логарифм. Если необходимо расчитать коф усиления в разах, то формула приобретает вид Ku = R25 / (R13 + 1) . Этот расчет бывает необходим при изготовлении предварительного усилителя и вычисления амплитуды выходного сигнала в вольтах, чтобы исключить работу усилителя мощности в режиме жесткого клиппинга.
Снижение собственного коф. усиления до 21 дБ (R13 = 910 Ом) приводит к снижению уровня THD примерно в 1,7 раза при той же амплитуде выходного сигнала (увеличена амплитуда входного напряжения).

Ну а теперь несколько слов о самых популярных ошибках при сборке усилителя самостоятельно.
Одной из самых популярных ошибок является монтаж стабилитронов на 15 В не правильной полярностью , т.е. эти элементы работают не в режиме стабилизации напряжения, а как обычные диоды. Как правило такая ошибка вызывает появление на выходе постоянного напряжения, причем полярность может быть как положительной, так и отрицательной (чаще отрицательной). Величина напряжения базируется между 15 и 30 В. При этом ни один элемент не греется. На рисунке 20 показана карта напряжений при не правильном монтаже стабилитронов, которую выдал симмулятор. Ошибочный элементы выделены зеленым цветом.


Рисунок 20 Карта напряжений усилителя мощности с неправильно запаянными стабилитронами.

Следующей популярной ошибкой является монтаж транзисторов "вверх ногами" , т.е. когда путают коллектор и эмиттер местами. В этом случае так же наблюдается постоянное напряжение, отсутствие каких либо признаков жизни. Правда обратное включение транзисторов дифкаскада может привести к выходу их из строя, ну а дальше как повезет. Карта напряжений при "перевернутом" включении показан на рисунке 21.


Рисунок 21 Карта напряжений при "перевернутом" включении транзисторов дифкаскада.

Довольно часто транзисторы 2N5551 и 2N5401 путают местами , причем могут попутать так же и эмиттер с коллектором. На рисунке 22 показана карта напряжений усилителя при "правильном" монтаже попутанных местами транзисторов, а на рисунке 23 - транзисторы не только поменяны местами, но и перевернуты.


Рисунок 22 Транзитсторы дифкаскада попутаны местами.


Рисунок 23 Транзисторы дифкаскада попутаны местами, кроме этого попутаны местами коллектор и эмиттер.

Если попутаны местами транзисторы, а эмиттер-коллектор запаяны правильно, то на выходе усилителя наблюдается небольшое постоянное напряжение, регулируется ток покоя окнечных транзисторов, но звук либо отсутствует полностью, либо на уровне "кажется он играет". Перед монтажом на плату запаянных таким образом тразисторов их следует проверить на работоспособность. Если транзисторы поменяны местами, да еще и поменяны местами эмиттер-коллектор, то тут ситуация уже довольно критическая, поскольку в этом варианте для транзисторов дифкаскада полярность приложенного напряжения является правильной, а вот рабочие режимы нарушены. В этом варианте наблюдается сильный нагрев оконечных транзисторов (протекающий через них ток равен 2-4 А), небольшое постоянное напряжение на выходе и едва слышный звук.
Попутать цоколевку транзисторов последнего каскада усилителя напряжения довольно проблематично, при использовании транзисторов в корпусе ТО-220, а вот транзисторы в корпусе ТО-126 довольно часто впаивают "вверх ногами", меняя местами коллектор и эмиттер . В этом варианте наблюдается сильно искаженный выходной сигнал, плохая регулировка тока покоя, отсутствие нагрева транзисторов последнего каскада усилителя напряжения. Более подробная карта напряжения для этого варианта монтажа усилителя мощности показана на рисунке 24.


Рисунок 24 Транзисторы последнего каскада усилителя напряжения запаяны "вверх ногами".

Иногда путают местами транзисторы последнего каскада усилителя напряжения. В этом случае наблюдается небольшое постоянное напряжение на выходе усилителя, звук если и есть, то очень слабый и с огромными искажениями, ток покоя регулируется только в сторону увеличения. Карта напряжений усилителя с такой ошибкой показана на рисунке 25.


Рисунок 25 Ошибочный монтаж транзисторов последнего каскада усилителя напряжения.

Предпоследний каскад и оконечные транзисторы в усилителе местами путают слишком редко, поэтому этот вариант расматриваться не будет.
Иногда усилитель выходит из строя, самые частые причины для этого перегрев оконечных тразисторов или перегрузка. Недостаточная площадь теплоотвода или плохой тепловой контакт фланцев транзисторов может привести к нагреву кристалла оконечных транзисторов до температуры механического разрушения. Поэтому до полного ввода усилителя мощности в эксплуатацию необходимо убедиться в том, что винты или саморезы, крепящие оконечники к радиатору затануты полностью, изолирующиепрокладки между фланцами транзисторов и теплоотводом имеет хорошую смазку термопастой (рекомендуем старую, добрую КПТ-8), а так же размер прокладок больше размера транзистора минимум на 3 мм с каждой стороны. Если недостаточна площадь теплоотвода, а другого попросту нет, то можно воспользоваться вентиляторами на 12 В, которые используются в компьютерной технике. Если собранный усилитель планируется для работы только на мощностях выше средней (кафе, бары и т.д.) то куллер можно влючить на непрерывную работу, поскольку его все равно не будет слышно. Если же усилитель собран для домашенго использования и будет эксплуатироваться и на малых мощностях, то работу куллера уже будет слышно, а необходимость в охлаждении отпадает - радиатор почти не греется. Для таких режимо работы лучше испозовать управляемык куллеры. Несколько вариантовуправления куллером можно . Предлагаемые варианты управления куллерами основаны на контрле температуры радиатора и вклюячаются лишь по достижении радиатором определенной, регулируемой температуры. Решить проблему выхода из строя окнечных транзисторов можно либо установкой дополнительной защиты от перегрузки, либо аккуратным монтажом проводов идущих на акустическую систему (например использовать для подключения АС к усилителю автомобильных безкислородных проводов, которые кроме уменьшеного активного сопротивления имеют повышенную крепость изоляции, устойчивую к ударам и температуре).
Для примера рассмотрим несколько варианов выхода из строя оконечных транзисторов. На рисунке 26 показана карта напряжений в случае выхода обратных оконечных транзисторов (2SC5200) на обрыв, т.е. переходы отгорели и имеют максимально возможное сопротивление. В этом случае усилитель сохраняет рабочие режимы, на выходе сохраняется напряжение близкое в нулю, но вот качество звука однозначно желает лучше, поскольку воспроизводится только одна полуволна синусоиды - отрицательная (рис 27). Тоже самое будет при обрыве прямых оконечных транзисторов (2SA1943), только воспроизводится будет положительная полуволна.


Рисунок 26 Обратные оконечные транзисторы выгорели до обрыва.


Рисунок 27 Сигнал на выходе усилителя в случае, когда транзисторы 2SC5200 отгорели полностью

На рисунке 27 - карта напряжений в ситуации, когда оконечники вышли из строя и имеют максимально низкое сопротивление, т.е. закорочены. Этот вариант неисправности загоняет усилитель в ОЧЕНЬ жесткие условия и дальнейшие горение усилителя ограничивает только источник питания, поскольку потребляемый в этот момент ток может превысить 40 А. Оставшиеся в живых детали мгновенно набирают температуру, в том плече, где транзисторы еще исправны напряжение немного больше, чем в том, где собственно произошло замыкание на шину питания. Однако именно эта ситуация относиться к наиболее легкой диагностике - достаотчно до включения усилителя проверит мультиметром сопротивление переходов между собой, даже не выпаивая их из усилителя. Предел измерения, установленного на мультиметре - ПРОВЕРКА ДИОДОВ или ЗВУКОВАЯ ПРОЗВОНКА. Как правило выгоревшие транзисторы показывают сопротивление между переходами в диапазоне от 3 до 10 Ом.


Рисунок 27 Карта напряжений усилителя мощности в случае перегорания оконечных транзисторов(2SC5200) на короткое замыкание

Усилитель поведет себя точно так же в случае пробоя предпоследнего каскада - при отгороани выводов будет воспроизводиться только одна полуволна синусоиды, при коротком замыкании переходов - огромное потребление и нагрев.
При перегреве, когда считают, что радиатор на транзисторы последнего каскада усилителя напряжения не нужен (транзисторы VT5, VT6) они могут так же выйти из строя, причем как уйти на обрыв, так и на короткое замыкание. В случае отгорания переходов VT5 и бесконечно большого сопротивления переходов возникает ситуация, когда поддерживать ноль на выходе усилителя не чем, а приоткрытые оконечные транзисторы 2SA1943 потянут напряжение на выходе усилителя к минусу напряжения питания. Если нагрузка подключена, то величина постоянного напряжения будет зависеть от установленного тока покоя - чем он выше, тем будет больше величина отрицательного напряжения на выходе усилителя. Если нагрузка не подключена, то на выходе будет напряжение очень близкое по величине к минусовой шине питания (рис 28).


Рисунок 28 Транзистор усилителя напряжения VT5 "оборвался".

Если же транзистор в последнем каскаде усилителя напряжения VT5 вышел из строя и его переходы замкнулись, то при подключенной нагрузке на выходе будет довольно большое постоянное напряжение и ппротекающий через нагрузку постоянный ток, порядка 2-4 А. Если же нагрузка отключена, то напряжение на выходе усилителя будет почти равно положительной шине питания (рис. 29).


Рисунок 29 Транзистор усилителя напряжения VT5 "замкнулся".

На последок осталось только предложить несколько осцилограмм в наиболее координальных точках усилителя:


Напряжение на базах транзисторов дифкаскада при входном напряжении 2,2 В. Синия линия - базы VT1-VT2, красная линия - базы VT3-VT4. Как видно из рисунка и амплитудат и фаза сигнала практически совпадают.


Напряжение в точке соединения резисторов R8 и R11 (синяя линия) и в точке соединения резисторов R9 и R12 (красная линия). Входное напряжение 2,2 В.


Напряжение на коллекторах VT1 (красная линия), VT2 (зеленая), а так же на верхенм выводе R7 (синяя) и нижнем выводе R10 (сиреневая). ПРовал напряжения вызван рабтой на нагрузку и небольшим уменьшением питающего напряжения.


Напряжение на коллекторах VT5 (синим) и VT6 (красным. Входное напряжение уменьшено до 0,2 В, чтобы было наглядней видно, по по постоянному напряжению имеется разница примерно в 2,5 В

Осталось лишь пояснить на счет блока питания. Прежде всего мощность сетевого трансформатора для усилителя мощности в 300 Вт должна быть не менее 220-250 Вт и этого будет достаточно для воспроизведения даже очень жестких композиций.Более подробно о мощности блока питания усилителей мощности можно . Другими словами, если у вас есть трансформатор от лампового цветного телевизора, то это ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР для одного канала усилителя позволяющего без проблем воспроизводить музыкальные композиции мощностью до 300-320 Вт.
Емкость конденсаторов фильтра блока питания должна быть не менее 10 000 мкФ на плечо, оптимально 15 000 мкФ. При использовании емкостей выше указанного номинала Вы попросту увеличиваете стоимость конструкции без какого либо заметного улучшения качества звука. Не следует забывать, что при использовании таких больших емкостей и напряжении питания выше 50 В на плечо мгновенные токи уже критически огромны, поэтому настоятельно рекомендуется использовать ситемы софт-старта.
Прежде всего настоятельно рекомендутеся перед сборкой какого либо усилителя скачать на ВСЕ полупроводниковые элементы описания заводов производителей (даташиты). Это даст возможность ознакомиться с элементной базой поближе и в случае отсутствия в продаже какого либо элемента найти ему замену. Кроме этого у вас будет под рукой правильная цоколевка транзисторов, что значительно увеличит шансы на правильный монтаж. Особо ленивым предлагается ОЧЕНЬ внимаетльно ознакомиться хотя бы с расположением выводов транзисторов, используемых в усилителе:

.
На последок осталось добавить, что далеко не всем требуется мощность 200-300 Вт, поэтому печатная плата была переработана под одну пару оконечных танзисторов. Данный файл выполнен одним из посетителей форума сайта "ПАЯЛЬНИК" в программе СПРИНТ-ЛАЙОУТ-5 (СКАЧАТЬ ПЛАТУ). Подробности о данной программе находяться .