Схемы зарядных устройств для 18650. Зарядное устройство для Li-Ion аккумулятора из барахла. Можно ли заряжать литий-ионный аккумулятор без контроллера

Современные Li-ion аккумуляторы имеют высокие массогабаритные показатели и обладают хорошей энергоёмкостью. На данный момент это наиболее эффективные портативные источники тока, способные питать устройства высокой мощности. Данные аккумуляторы появились у меня после поломки ноутбука, а именно я их снял с аккумуляторной батареи, и появился вопрос, как же зарядить эти аккумуляторы? Покупать специализированное зарядное устройство мне как всегда не хотелось, и, решил начать сборку ЗУ для Li-ion аккумуляторов. На рисунке ниже представлена принципиальная схема зарядного устройства, данная схема отличается высокой повторяемостью и надежностью, детали легкодоступные, а главное недорогие.

Для того, чтобы Li-ion аккумуляторы долго служили, необходимо их правильно заряжать. К концу завершения зарядки, напряжение должно уменьшаться, а когда аккумулятор зарядился, т.е. ток заряда станет почти нулевой, зарядка должна остановиться. Данная схема полностью удовлетворяет этим требованиям. Подключенное к нему разряженное АКБ заряжается током ~300мА, к концу заряда ток уменьшается до 30мА и дальше загорается светодиод VD2, который сигнализирует о завершении зарядки.
Светодиод VD1 сигнализирует о работе устройства, VD3 загорается при подключении АКБ.

В схеме используется операционный усилитель LM358N, его аналогом является КР1040УД1. Но если под рукой не окажется ни того ни другого, можно заменить на КР574УД2, только расположение выводов у него отличается. Транзистор VT1 S8550 или любой другой подходящий по параметрам. Светодиоды на напряжение 1.5 вольт, красного, зеленого и желтого цветов. Схема после сборки наладки не требует и начинает работать сразу. Среднее время зарядки аккумулятора 18650 емкостью 2200мА*час - 2 часа.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
D1 Операционный усилитель

LM358N

1 В блокнот
VT1 Биполярный транзистор

S8550

1 В блокнот
VD1-VD3 Светодиод 3 В блокнот
C1 Конденсатор 0.068 мкФ 1 В блокнот
C2 Электролитический конденсатор 220мкФ 10В 1 В блокнот
R1 Резистор

3.6 кОм

1 В блокнот
R2 Резистор

1 кОм

1 В блокнот
R3 Резистор

470 Ом

1 В блокнот
R4 Резистор

4.7 кОм

1 В блокнот
R5 Резистор

2.2 кОм

1 В блокнот
R6 Резистор

220 Ом

1 В блокнот
R7 Резистор

1 Ом

1 В блокнот
R8 Резистор

2.7 кОм

1 В блокнот
R9 Резистор

12 кОм

1 В блокнот
R10 Резистор

680 кОм

1

Сегодня можно увидеть большой ассортимент разнообразных зарядных систем. Каждое предназначается для конкретного аппарата. Зарядное устройство 18650 несколько отличается от аналогичного прибора для зарядки кислотных батарей. Литиевый аккумулятор 18650 имеет высокое напряжение каждой банки.

Магазины, торгующие электротехникой, предлагают огромный ассортимент зарядных устройств. Наиболее дешевая зарядка для li ion аккумулятора 18650 дает ток равный 1 амперу. Устройство предназначено для зарядки одного аккумулятора 18650.

Промышленность выпускает улучшенную зарядную систему, предназначенную для работы с аккумуляторами 18650. Здесь можно одновременно поместить сразу 2–4 элемента. Максимальное напряжение не превышает 4,2 вольта. Устройство имеет высокую стоимость, так как оно оборудовано контроллером заряда, следящим за временем и напряжением заряда.

Любителям универсальных устройств, предлагается зарядка для таких батарей разного типа. Этот зарядник способен одновременно заряжать никелевые, а также литий-ионный аккумулятор 18650. Большинство современных зарядных устройств оборудованы системой безопасности, следящей за напряжением, а также зарядным током. Естественно, чем выше качество зарядника, тем выше его стоимость.

Заводские изделия сначала подают большой ток, постепенно снижая его значение. В результате изделие не перегревается, увеличивается срок службы ion аккумулятора.
Чтобы одновременно зарядить четыре батареи 18650, подойдет зарядное устройство Nitecore Digicharger D4. Прибор оборудован информативным дисплеем, показывающим полезную информацию. На экране высветится время зарядки, скорость заряда, а также напряжение элементов. Управление прибором дает возможность переключаться между разными отсеками, для прочтения информации о каждом заряжаемым аккумуляторе. Прибор относится к универсальной группе, поэтому в нем можно заряжать батареи различного типа.

Изделие автоматически устанавливает время заряда, регулирует его скорость. К сожалению, зарядник не оборудован ручной настройкой, что исключает тонкую подстройку. Устройство автоматически завершает процесс заряда любого аккумулятора.

Nitecore D4 будет оптимальным прибором, если существует потребность ежедневного использования. Особенно это касается лиц, у которых несколько мобильных устройств с аккумуляторами разного типа.

Самодельное зарядное

Чтобы самостоятельно сделать зарядку для аккумуляторов 18650, важно предварительно изучить, как работают электрической цепи, а также параметры, разрешающие проводить зарядку АКБ. Известно несколько способов.

Простейшим вариантом считается подзарядка батарейки зарядным устройством, подходящим к телефонам «Самсунг». Сила тока, а также напряжения такого зарядника, подходит к АКБ 18650.

Схема подключения достаточно проста. Провода зарядника освобождаются от фиксирующей оболочки. Определяется минусовой контакт, а также плюсовой провод. Плюс всегда подается красным проводом, минус черным. Перепутать невозможно.

К аккумулятору подсоединяют оголенные контакты, соблюдая полярность. Провода фиксируются обыкновенным пластилином. Остается только подать питание и начать зарядку, регулярно контролируя процесс. В течение часа параметры емкости будут полностью восстановлены.

Другой метод, предназначен для усовершенствования зарядки. Но схема подключения будет сложнее. Для работы понадобиться:

  • паяльник;
  • припой;
  • клей;
  • флюс.

Важнейшим элементом для домашнего устройства считается плата зарядки. Она продается в интернет-магазинах. Сборка выполняется в определенной последовательности. Сначала подготавливается пластмассовый бокс с проводами (плюс, минус). К нему припаивается зарядная плата. Батарейка вкладывается в бокс, подается питание, начинается зарядка.

Чтобы воспользоваться таким вариантом, важно подобрать бокс (емкость) габариты которого соответствовали размерам батареи 18650. Припаивать провода нужно на места, специально обозначенные на плате. Чтобы контролировать величину заряда, плата оборудована несколькими светодиодными индикаторами, различного оттенка (красный, зеленый).

Плата фиксируется к боксу в любом месте, позволяющим видеть работу индикаторов. Затем припаиваются провода, выдерживая полярность. Концы, перед началом пайки, тщательно зачищаются, затем покрываются канифолью. На поверхность платы капают жидким флюсом (2–3 капли).

Во время пайки провода не должны контактировать между собой. Описанную схему можно самостоятельно собрать очень быстро. Стоит она недорого, зато отличается высокой надежностью и отличным зарядом. После подачи напряжения, останется только смотреть на индикатор. Зеленая лампочка показывает силу заряда батарейки.



Общие требования к зарядке аккумуляторов 18650

Во время заряда литиевых батарей 18650, на выходе обязательно должно подаваться напряжение 5 В, значение тока 0,5 – 1А (берется от минимального значения ёмкости АКБ). Другими словами, литиевый аккумулятор, ёмкостью 2600 мАч, необходимо заряжать током, в диапазоне 1,32,6 ампера. Изготовители зарядок для таких батарей, выпускают устройства, выполняющие такой процесс, несколькими шагами.

Сначала подается ток 0,2 А. Причем напряжение одной банки достигает 4,1–4,2 вольта. На такую операцию уходит меньше одного часа. На втором этапе подается постоянное напряжение. Чтобы уменьшить время заряда, на производстве начали выпускать зарядник с импульсным режимом

Некоторые литий-ионные аккумуляторы оборудованы графитовым электродом. Чтобы заряд проходил нормально, необходимо, чтобы на каждый элемент подавалось напряжение, превышающее 4,1 вольта. Если взять обычный литиевый аккумулятор, повышение напряжения приведет к увеличению энергетической плотности, одновременно начнут свою активную деятельность окислительные процессы.

В результате срок эксплуатации литиевого аккумулятора резко снижается. Такого явления не наблюдается в батареях, оборудованных графитовыми электродами. Окисление снижается специальными добавками. Другими словами увеличение напряжения в графитовых батареях не является критичным, но лучше этого не делать.
Если начать заряжать аккумуляторы 18650 током 1А, для полного заряда потребуется приблизительно 2–3 часа. За этот время напряжение поднимется до определённой величины. Во время работы зарядное устройство быстро уменьшает ток на несколько процентов (считается от первоначальной величины). Увеличение тока заряда (больше 1 ампера) не оказывает серьезного влияния на время зарядки. Вторая стадия заряда, обычно продолжается намного дольше, чем в самом начале.

Промышленность изготавливает зарядные устройства, которые способны полностью зарядить литиевый аккумулятор18650 приблизительно за один час. Эти приборы не в состоянии провести второй этап, он полностью отсутствует. На первоначальном этапе зарядка АКБ осуществляется примерно на 60–80 процентов. Затем она начинает эксплуатироваться в приборе. Такой заряд не может считаться критичным для литиевых элементов. Даже наоборот, они не должны полностью заряжаться, аккумулятор не должен сильно разряжаться

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой

Самодельное зарядное устройство для аккумуляторов 18650.

Один раз понадобилось мне в гараже зарядить аккумулятор 18650 для фонарика, а под рукой зарядки не было. Таскать с собой iMax B6 нет никакого желания, поэтому решил сделать зарядку сам с минимальными затратами.


Чтобы сделать зарядку, необходим держатель аккумуляторов 18650. Так как помимо зарядки держатель собирался использовать и в других местах, я решил купить лот из нескольких держателей. Так выходит дешевле, чем покупать по одному.
На бике заказал пластиковый держатель для аккумуляторов. Лот из 4 шт. стоил 1,91$ (с купоном)
Пришла посылка в обычном биковском сером пакете. Внутри - километры пупырки и, собственно, товар.








Пластик нормальный, провода запрессованы. Аккумулятор 18650 стандартного размера (65 мм) помещается без проблем. Аккумуляторы с защитой (69 мм) тоже помещаются.


На фотографии в держатель вставлен аккумулятор стандартного размера. При извлечении аккумулятора возник первый вопрос: по бокам пластик заходит на аккумулятор, чтоб исключить самопроизвольное его выпадение, но извлекать аккумулятор становится проблематично. Можно, конечно, поддеть отверткой 18650, но шанс покарябать аккумулятор очень велик. Было решено модернизировать держатель, приклеив полоску ткани (лента) посередине.




После такой модернизации аккумулятор извлекается очень легко.

Для зарядного устройства необходим контроллер заряда. На eBay я сразу полез к знакомому продавцу, у которого покупаю электронику. После недолгого поиска я нашёл для литиевых аккумуляторов. Я покупал контроллер за 1,11$ с входом для датчика температуры, хотя у него же можно найти контроллер попроще по цене меньше доллара ().

Контроллер выглядит так:

У платки есть стандартный вход MicroUSB, что позволяет заряжать аккумуляторы от компьютерного порта USB или от сетевой зарядки, у которой есть выход USB (для примера вот )
На плате припаян чип ТР4056 (кому интересно, есть )

С сайта продавца характеристика платы:

input voltage: 4V-8V maximum output charging current: 1000mA
the charging D1 indicator lights, charging is completed D2 indicator
PCB board size: 37.3 (mm) x15 (mm)

Небольшое описание платы в картинках:


Согласно datasheet-у, если увеличить сопротивление R4 до 2,4 кОм, то можно уменьшить (ограничить) ток заряда до 500 мА.
Плату я приклеил термопистолетом к держателю аккумулятора.


Там же проложил и припаял провода

Если подать напряжение на USB порт, то загорается индикатор D2 зелёным цветом, а индикатор D1 начинает мигать красным цветом (аккумулятор не вставлен в держатель).

Когда вставлен аккумулятор и подключено внешнее питание, то загорается индикатор D1

На неполностью заряженном аккумуляторе показания, которые берутся с USB порта:
U=5,02В I=0,49А. Напряжение на аккумуляторе 4,21 В

замеры в начале заряда






После окончания заряда загорается индикатор D2 зелёным цветом

На полностью заряженном аккумуляторе показания, которые берутся с USB порта:
I=0,00А. Напряжение на аккумуляторе 4,21 В

замеры в конце заряда




Дальше я решил проверить, до конца ли я зарядил самодельной зарядкой аккумулятор. Для этого я подождал пару часов и попробовал зарядить аккумулятор iMax B6 током 0,5 А.

Как видно на индикаторе, аккумулятор заряжался почти 10 минут и взял всего 14 мАч. Причем ток практически сразу сбросился до 0,1А и держался так все 10 минут.

Кстати, на последней фотографии видно ещё одно применение держателя для аккумуляторов 18650.
Вблизи держатель с клеммами для iMax B6 выглядит так:



Ленту я приклеил обычным суперклеем. Бока держателя (3 штуки) я срезал канцелярским ножом, оставил лишь один бок для подстраховки.

Далее я попробовал разрядить аккумулятор, чтобы понять, выдаст ли 18650 свою ёмкость, и заодно после разряда проверить, какой ток потребляется в начальный момент заряда от USB порта.


На фотографии видно, что 18650 отработал на все 100% (на самом аккумуляторе написана ёмкость)

Начальный момент заряда:


Данный аккумулятор ёмкостью 1365мАч заряжался с полностью разряженного состояния чуть более 3 часов.

Кратенько минусы и плюсы:
Минусы
Трудно достать аккумулятор из держателя. После небольшой доработки данный минус убирается.

Замечания (не минусы и не плюсы)
Заметил небольшой баг зарядного. Если подать питание на USB порт, а потом вставить аккумулятор, то зарядка не начнётся. То есть нужно сначала вставить аккумулятор, а потом на зарядное подать напряжение.

Плюсы
1) Цена. За 1,5$ полноценная зарядка аккумуляторов 18650.
2) Возможность регулировки зарядного тока путём замены резистора R4 (в datasheet есть таблица, которая показывает, какой резистор нужно поставить, чтобы выставить зарядный ток)
3) Компактное

Выводы
За 1,5$ и полчаса времени я получил компактное зарядное, которое меня полностью устраивает.

Планирую купить +106 Добавить в избранное Обзор понравился +93 +217

Практически у всех современных литий-ионных аккумуляторов отличная энергоёмкость, а также высокие малогабаритные показатели. Именно с их помощью можно питать устройства высокой мощности с наибольшей эффективностью. И совершенно не обязательно для этого покупать готовое зарядное устройство в магазине, ведь есть вариант более бюджетный, который особенно понравится радиолюбителям - собрать зарядное для литий-ионных аккумуляторов своими руками.

Меры предосторожности: перезаряд недопустим

Крайне важно перед началом сборки АКБ для батарей запомнить одну простую вещь - литиевые аккумуляторы строго запрещено перезаряжать. У них очень строгие требования к режиму зарядки и эксплуатации, поэтому их нельзя заряжать до напряжения больше 4,2 В. А ещё лучше руководствоваться информацией о безопасном пороге для каждой отдельно взятой банки. Кстати, там может быть указан даже меньший порог, который считается допустимым для этого экземпляра.

Ещё лучше, если вы собираетесь делать зарядку для литиевых аккумуляторов своими руками, несколько раз проверить используемые материалы и оборудование. Если у вас сомнения относительно точности показаний вашего вольтметра или происхождения банок, а также максимально допустимой мощности их заряда, лучше ставить порог ещё меньше. Оптимально будет в пределах 4.1–4.15 В. В этом случае заряжать АКБ, у которых нет встроенной платы защиты, будет безопасно для вас.

В противном случае велика вероятность сильного нагрева и вздутия банок, обильного выделения газа с резким неприятным запахом и даже их последующего взрыва. Проверьте все несколько раз перед тем, как приступать к сборке и зарядке.

Как собрать зарядное устройство для литиевых аккумуляторов своими руками

Один из простейших, если не самый простой, вариант создания зарядного устройства. Он предусматривает использование микросхемы LM317. Она дешёвая и повсеместно доступная, плюс оснащается индикатором заряда.

Настройка сводится к тому, чтобы установить выходное напряжение номиналом 4,2 Вольта, используя подстроечный резистор R8. Только обязательно без подключённого аккумулятора. А также устанавливается зарядный ток методом подбора резисторов R4 и R6. Рекомендуемая мощность резистора R1 при этом должна составлять не менее 1 Ватт.

Когда светодиод на схеме погаснет, это сигнализирует о завершении процесса зарядки батареи. При этом показатели зарядного тока до нуля уменьшаться никогда не будут.

Микросхемы типа LM317, как и её аналоги, очень широко применяются во всевозможных стабилизаторах тока и напряжения. При этом купить их можно на любом радиорынке, а обойдутся они в сущие копейки.

Недостатком схемы можно считать питающее напряжение, которое обязательно должно составлять от 8 до 12 В. Это обусловлено тем, что для нормального функционирования микросхемы требуется разница между напряжением на АКП и питающим напряжением не меньше 4,25 В, то есть запитать устройство с помощью порта USB не получится.

Последовательность сбора зарядки литиевых аккумуляторов своими руками такова:

  1. подбираете подходящий корпус;
  2. крепите к нему блок питания (5 В) и элементы указанной схемы (обязательно в правильном порядке);
  3. берете латунь и вырезаете из неё две полоски, крепите их на гнёзда;
  4. используя гайку, устанавливаете расстояние между контактами и АКБ, которые собираетесь подключать;
  5. крепите переключатель, если хотите впоследствии иметь возможность изменять полярность на гнёздах (если - нет, оставляете все как есть).

Но если задачей является сборка зарядного устройства, ориентированного на работу с аккумуляторами 18650, тогда сразу стоит переходить к более сложным схемам, либо же покупать готовый девайс. Без соответствующих технических навыков собрать узел не получится. Порой действительно проще потратить немного больше денег, но взять заводской зарядник с необходимыми параметрами и защитой.

Как собрать зарядку для литий-ионных аккумуляторов своими руками?

Поскольку Li-Ion батареи чувствительны к резкому напряжению во время зарядки , в фирменных АКБ встроены специальные микросхемы. Они обеспечивают контроль напряжения и не позволяют превышать допустимые пределы. Поэтому для того чтобы собрать зарядку для литиевых аккумуляторов 18650 своими руками, нужна более сложная схема, чем та, о которой шла речь выше.

Такой вариант АКБ будет создать намного сложнее, чем предыдущий и в домашних условиях это возможно, только если есть определённые навыки и соответствующий опыт. В теории вы сможете получить зарядное устройство , которое по характеристикам ничем не будет уступать фирменным АКБ. Но на практике это далеко не всегда так.

А вы собирали ЗУ в домашних условиях из подручных материалов? Расскажите в комментариях о своих результатах.